
Emory提出最新PolygonGNN框架:可捕捉通用多边形内外的空间关系 | KDD 2024
Emory提出最新PolygonGNN框架:可捕捉通用多边形内外的空间关系 | KDD 2024PolygonGNN是一种新型框架,用于学习包括单一和多重多边形在内的多边形几何体的表征,它通过异质可见图来捕捉多边形内外的空间关系,并利用图神经网络有效处理这些关系,以提高计算效率和泛化能力。该框架在五个数据集上表现出色,证明了其在捕捉多边形几何体有用表征方面的有效性。
PolygonGNN是一种新型框架,用于学习包括单一和多重多边形在内的多边形几何体的表征,它通过异质可见图来捕捉多边形内外的空间关系,并利用图神经网络有效处理这些关系,以提高计算效率和泛化能力。该框架在五个数据集上表现出色,证明了其在捕捉多边形几何体有用表征方面的有效性。
微软Phi 3.5系列上新了!mini模型小而更美,MoE模型首次亮相,vision模型专注多模态。
2024年,AI 领域中最炙手可热的话题无疑是Agent。
随着人工智能技术的广泛应用,人们认为AI可以避免人类常见的认知偏差。然而,AI本身可能会表现出类似于人类的偏差,例如锚定效应。本文通过回顾“系统1”和“系统2”两个思维模式,探讨AI在这两种模式中的运作方式,分析AI产生认知偏差的原因,并通过具体实验展示AI在面对锚定效应时的表现。本文进一步探讨如何在理解这些局限性的基础上,合理利用AI来改善人类决策质量,并强调AI透明性和可解释性的重要性。
随着大模型研究的深入,如何将其推广到更多的模态上已经成为了学术界和产业界的热点。最近发布的闭源大模型如 GPT-4o、Claude 3.5 等都已经具备了超强的图像理解能力,LLaVA-NeXT、MiniCPM、InternVL 等开源领域模型也展现出了越来越接近闭源的性能。
现在,长上下文视觉语言模型(VLM)有了新的全栈解决方案 ——LongVILA,它集系统、模型训练与数据集开发于一体。
爆火神经网络架构KAN,上新了!
本期我们邀请到了 纽约大学计算机科学院博士 童晟邦 带来【多模态大模型:视觉为中心的探索】的主题分享。
本报告展示及分析了2024年7月全球AI产品的流量态势,通过全球、国内及出海等不同维度进行了详尽的展示。报告涵盖了访问量、下载量、独立访客、APP收入、访问时长以及移动页面占比等核心指标。
AI掌握自我设计的权力,将会怎样?最近,来自UBC等机构研究人员提出了「智能体自动化设计」系统,让元智能体使用搜索算法,自动构建强大的同类。
Llama3.1系列模型的开源,真让大模型格局大震,指标上堪比最好的闭源模型比如GPT 4o和Claude3.5,让开源追赶闭源成为现实。
作为基础的视觉语言任务,指代表达理解(referring expression comprehension, REC)根据自然语言描述来定位图中被指代的目标。REC 模型通常由三部分组成:视觉编码器、文本编码器和跨模态交互,分别用于提取视觉特征、文本特征和跨模态特征特征交互与增强。
在当今数字化时代,人工智能(artificial intelligence,AI)技术迅猛发展,尤其是生成式技术,如ChatGPT(chat generative pre-trained transformer),对人类生活的影响日益深远。
合成数据2.0秘诀曝光了!来自微软的研究人员们提出了智能体框架AgentInstruct,能够自动创建大量、多样化的合成数据。经过合成数据微调后的模型Orca-3,在多项基准上刷新了SOTA。
越来越多研究发现,后训练对模型性能同样重要。Allen AI的机器学习研究员Nathan Lambert最近发表了一篇技术博文,总结了科技巨头们所使用的模型后训练配方。
过去几年间,Transformer 架构已经取得了巨大的成功,同时其也衍生出了大量变体,比如擅长处理视觉任务的 Vision Transformer(ViT)。本文要介绍的 Body Transformer(BoT) 则是非常适合机器人策略学习的 Transformer 变体。
单目深度估计新成果来了!
互相检查,让小模型也能解决大问题。
发布40天后,最强开源模型Llama 3.1 405B等来了微调版本的发布。但不是来自Meta,而是一个专注于开放模型的神秘初创Nous Research。
Nature的一篇文章透露:你发过的paper,很可能已经被拿去训练模型了!有的出版商靠卖数据,已经狂赚2300万美元。然而辛辛苦苦码论文的作者们,却拿不到一分钱,这合理吗?
随着大模型的快速发展,指令调优在提升模型性能和泛化能力方面发挥着至关重要的作用。
一口气生成2万字,大模型输出也卷起来了!
最近的论文表明,LLM等生成模型可以通过搜索来扩展,并实现非常显著的性能提升。另一个复现实验也发现,让参数量仅8B的Llama 3.1模型搜索100次,即可在Python代码生成任务上达到GPT-4o同等水平。
最近ACL 2024 论文放榜,扫了下,SMoE(稀疏混合专家)的论文不算多,这里就仔细梳理一下,包括动机、方法、有趣的发现,方便大家不看论文也能了解的七七八八,剩下只需要感兴趣再看就好。
AI在现实工作环境中如何影响了工作效率?微软发起一项最大规模的调查研究,AI工具在工作场景中最大提效30%。
近日,来自佐治亚理工学院的研究人员开发了RTNet,首次表明其「思考方式」与人类非常相似。
天网离我们还有多远?现在,科学家们希望通过一个强大的超算网络,来加速发展人类级别的人工智能,预计在2025年前全面投入运行。
只用提示词,多模态大模型就能更懂场景中的人物关系了。
Mini-Monkey 是一个轻量级的多模态大型语言模型,通过采用多尺度自适应切分策略(MSAC)和尺度压缩机制(SCM),有效缓解了传统图像切分策略带来的锯齿效应,提升了模型在高分辨率图像处理和文档理解任务的性能。它在多项基准测试中取得了领先的成绩,证明了其在多模态理解和文档智能领域的潜力。
芯片物理布局,有了直指性能指标的新测评标准!