
AI蛋白质设计前沿教程,AAAI'25三大机构携手4小时全面剖析
AI蛋白质设计前沿教程,AAAI'25三大机构携手4小时全面剖析精准预测和设计蛋白质的序列、结构及模拟其动态变化,一直是科学界的重大挑战。
精准预测和设计蛋白质的序列、结构及模拟其动态变化,一直是科学界的重大挑战。
高调亮相的世界首个「AI CUDA工程师」,宣称能让模型训练速度飙升100倍,如今却上演了一场「作弊」闹剧。OpenAI研究员用o3-mini,11秒便发现了内核代码有bug!
近日,Meta等机构发表的论文介绍了一种通过进化算法构造高质量数据集的方法:拒绝指令偏好(RIP),得到了Yann LeCun的转赞。相比未经过滤的数据,使用RIP构建的数据集让模型在多个基准测试中都实现了显著提升。
DeepSeek开源第二弹如期而至。这一次,他们把MoE训推EP通信库DeepEP开源了,支持FP8专为Hopper GPU设计,低延迟超高速训练推理。
只刷逻辑益智题,竟能让 AI 数学竞赛水平大幅提升?
还在惊叹预言家的神奇?如今LLM也掌握了预测未来的「超能力」!研究人员通过自我博弈和直接偏好优化,让LLM摆脱人工数据依赖,大幅提升预测能力。
DeepSeek,就是AI一体机的“瓦特时刻”
DeepSeek 本周正在连续 5 天发布开源项目,今天是第 2 天,带来了专为混合专家模型(MoE)和专家并行(EP)打造的高效通信库 — DeepEP。就在半小时前,官方对此进行了发布,以下是由赛博禅心带来的详解。
Claude深夜重磅发布新模型——
文章主要是实现了中英文版本的BM25算法(主要就是分词部分有区别),算法可能也有缺陷,恳请看见的大佬指点指点,虽然也有比我实现的要更优秀的第三方库,比如bm25s
其实,这个话题我也不好意思开口,去年7月的时候我就关注过这个 AI情趣娃娃;在具身智能发展成熟时,表情陪伴人形机器人有望成为主流产品形态。表情陪伴人形机器人属情绪陪伴机器人高端领域,指的是硅胶皮肤覆盖,根据仿生学原理模仿人的外观设计、能够与人类进行自然交互的人形机器人。
南大AI学院钱超教授团队,荣获EDA顶会2025最佳论文奖!其中,论文一作、四作、五作都是南大人工智能学院的本硕博生。芯片设计领域的传统难题——如何为多达百亿量级晶体管设计最优布局,从此有了一种巧妙的全新方法。
DeepSeek-R1背后关键——多头潜在注意力机制(MLA),现在也能轻松移植到其他模型了!
你能想象判别模型也能成为强大的图像合成高手吗?「直接上升合成」(DAS)做到了!它突破传统认知,借助多分辨率优化等创新技术,在图像生成的多个关键任务中表现出色。
理解物体的物理属性,对机器人执行操作十分重要,但是应该如何实现呢?
自 OpenAI 发布 o1-mini 模型以来,推理模型就一直是 AI 社区的热门话题,而春节前面世的开放式推理模型 DeepSeek-R1 更是让推理模型的热度达到了前所未有的高峰。
如何让大模型感知知识图谱知识?
省一半算力跑出2倍效果,月之暗面开源优化器Muon,同预算下全面领先。
国内芯片设计研究团队,刚刚在国际学术顶会上获奖了。
最近,扩散模型在生成模型领域异军突起,凭借其独特的生成机制在图像生成方面大放异彩,尤其在处理高维复杂数据时优势明显。然而,尽管扩散模型在图像生成任务中表现优异,但在图像目标移除任务中仍然面临诸多挑战。现有方法在移除前景目标后,可能会留下残影或伪影,难以实现与背景的自然融合。
算力需求比AdamW直降48%,OpenAI技术人员提出的训练优化算法Muon,被月之暗面团队又推进了一步!
随着AI工具越来越普及,类似Deep Researh这样的工具越来越好用,科学研究成果呈现爆炸式增长。以arXiv为例,仅2024年10月就收到超过24,000篇论文提交。
近年来,随着扩散模型和 Transformer 技术的快速发展,4D 人体 - 物体交互(HOI)的生成与驱动效果取得了显著进展。然而,当前主流方法仍依赖 SMPL [1] 这一人体先验模型来生成动作。
OpenAI o1视觉能力还是最强,模型们普遍“过于自信”!
把扩散模型的生成能力与 MCTS 的自适应搜索能力相结合,会是什么结果?
2 月 18 日,月之暗面发布了一篇关于稀疏注意力框架 MoBA 的论文。MoBA 框架借鉴了 Mixture of Experts(MoE)的理念,提升了处理长文本的效率,它的上下文长度可扩展至 10M。并且,MoBA 支持在全注意力和稀疏注意力之间无缝切换,使得与现有的预训练模型兼容性大幅提升。
在人工智能高速发展的今天,我们似乎迎来了一个"假设爆炸"的时代。大语言模型每天都在产生数以万计的研究假设,它们看似合理,却往往难以验证。这让我不禁想起了20世纪最具影响力的科学哲学家之一——卡尔·波普尔。
GitHub上一个开源项目彻底打破门槛:只需3块钱、2小时,普通人也能从零训练自己的语言模型!项目“MiniMind”上线即爆火,狂揽8.9k星标,技术圈直呼:“这才是AI民主化的未来!”
DeepSeek啥都开源了,就是没有开源训练代码和数据。现在,开源RL训练方法只需要用1/30的训练步骤就能赶上相同尺寸的DeepSeek-R1-Zero蒸馏Qwen。
OpenAI o1和DeepSeek-R1靠链式思维(Chain-of-Thought, CoT)展示了超强的推理能力,但这一能力能多大程度地帮助视觉推理,又应该如何细粒度地评估视觉推理呢?