
英伟达开源新王登基!70B刷爆SOTA,击败GPT-4o只服OpenAI o1
英伟达开源新王登基!70B刷爆SOTA,击败GPT-4o只服OpenAI o1英伟达开源了超强模型Nemotron-70B,后者一经发布就超越了GPT-4o和Claude 3.5 Sonnet,仅次于OpenAI o1!AI社区惊呼:新的开源王者又来了?业内直呼:用Llama 3.1训出小模型吊打GPT-4o,简直是神来之笔!
英伟达开源了超强模型Nemotron-70B,后者一经发布就超越了GPT-4o和Claude 3.5 Sonnet,仅次于OpenAI o1!AI社区惊呼:新的开源王者又来了?业内直呼:用Llama 3.1训出小模型吊打GPT-4o,简直是神来之笔!
性能不输SOTA模型,计算开销却更低了——
当奥特曼、马斯克、Anthropic CEO都纷纷将AGI实现锚定在2026年前后,LeCun无疑是直接浇了冷水:完全是胡说八道。
近期,LLM领域有不少关于系统1和系统2思考的讨论,在Agent方向上这方面的讨论还很少。如何让AI agents既能快速响应用户,又能进行深度思考和规划,一直是一个巨大的挑战。
我们都知道,OpenAI 最近越来越喜欢发博客了。 这不,今天他们又更新了一篇,标题是「评估 ChatGPT 中的公平性」,但实际内容却谈的是用户的身份会影响 ChatGPT 给出的响应。
腾讯 AI Lab 联合中科大发布了一份针对类 SORA 视频生成模型的测评报告,重点聚焦目前最前沿的类 SORA DiT 架构的高质量视频生成闭源模型
OpenAI ο1 模型的发布掀起了人们对 AI 推理过程的关注,甚至让现在的 AI 行业开始放弃卷越来越大的模型,而是开始针对推理过程进行优化了。今天我们介绍的这项来自 Meta FAIR 田渊栋团队的研究也是如此,其从人类认知理论中获得了灵感,提出了一种新型 Transformer 架构:Dualformer。
近日,来自斯坦福、MIT、纽约大学和Meta-FAIR等机构的研究人员,通过新的研究重新定义了最大流形容量表示法(MMCR)的可能性。
「万物理论」终于迎来突破性进展!近日,来自中国科学院大学的研究人员提出了「万物智能演化理论」,不仅尝试统一物理学和智能科学,更揭示了观察者智能水平与物理规律之间的惊人联系。
就在刚刚,OpenAI 53页报告发现,你的名字会决定ChatGPT的回答。在少数情况下,不同性别、种族、民族背景的用户,会得到「量身定制」的回答,充满了AI的刻板印象。比如同样让ChatGPT起视频标题,男生会被建议简单生活,而女生则被建议做一顿晚餐。
TeleAI 李学龙团队提出具身世界模型,挖掘大量人类操作视频和少量机器人数据的共同决策模式。
AI对待每个人类都一视同仁吗? 现在OpenAI用53页的新论文揭示:ChatGPT真的会看人下菜碟。 根据用户的名字就自动推断出性别、种族等身份特征,并重复训练数据中的社会偏见。
2020 年初,新冠病毒的阴影迅速笼罩全球。在这场与时间的赛跑中,我们见证了无数英勇的个体和团队挺身而出,社会体系经历了一次次严峻考验,也为全球的公共卫生领域敲响了警钟。
虚幻引擎5加持。具身智能被视为当前人工智能(AI)领域最具潜力的方向之一,重点关注智能体感知、学习和与环境动态交互的能力。
具有强大泛化能力
在自然语言处理、语音识别和时间序列分析等众多领域中,序列建模是一项至关重要的任务。然而,现有的模型在捕捉长程依赖关系和高效建模序列方面仍面临诸多挑战。
在大语言模型(LLMs)后训练任务中,由于高质量的特定领域数据十分稀缺,合成数据已成为重要资源。虽然已有多种方法被用于生成合成数据,但合成数据的理论理解仍存在缺口。为了解决这一问题,本文首先对当前流行的合成数据生成过程进行了数学建模。
Robin3D通过鲁棒指令数据生成引擎(RIG)生成的大规模数据进行训练,以提高模型在3D场景理解中的鲁棒性和泛化能力,在多个3D多模态学习基准测试中取得了优异的性能,超越了以往的方法,且无需针对特定任务的微调。
量子计算机和经典计算机之间的较量,是永恒的。谷歌最新Nature研究中,证明了随机电路采样可以容忍多大噪声,依旧实现了量子霸权。
LightRAG通过双层检索范式和基于图的索引策略提高了信息检索的全面性和效率,同时具备对新数据快速适应的能力。在多个数据集上的实验表明,LightRAG在检索准确性和响应多样性方面均优于现有的基线模型,并且在资源消耗和动态环境适应性方面表现更优,使其在实际应用中更为有效和经济。
AI已完全融入数学家的工作流中。陶哲轩刚刚宣布,最新方程理论项目已完成99.9963%,众包之力外加AI辅助取得了重大成绩。他认为,剩余大约700个让人类头疼的难题,AI或许更有潜力。
随着对现有互联网数据的预训练逐渐成熟,研究的探索空间正由预训练转向后期训练(Post-training),OpenAI o1 的发布正彰显了这一点。
自从 Transformer 模型问世以来,试图挑战其在自然语言处理地位的挑战者层出不穷。 这次登场的选手,不仅要挑战 Transformer 的地位,还致敬了经典论文的名字。 再看这篇论文的作者列表,图灵奖得主、深度学习三巨头之一的 Yoshua Bengio 赫然在列。
o1 作为 OpenAI 在推理领域的最新模型,大幅度提升了 GPT-4o 在推理任务上的表现,甚至超过了平均人类水平。o1 背后的技术到底是什么?OpenAI 技术报告中所强调的强化学习和推断阶段的 Scaling Law 如何实现?
在用模拟环境训练机器人时,所用的数据与真实世界存在着巨大的差异。为此,李飞飞团队提出「数字表亲」,这种虚拟资产既具备数字孪生的优势,还能补足泛化能力的不足,并大大降低了成本。
是什么让纽约大学著名研究者谢赛宁三连呼喊「Representation matters」?他表示:「我们可能一直都在用错误的方法训练扩散模型。」即使对生成模型而言,表征也依然有用。基于此,他们提出了 REPA,即表征对齐技术,其能让「训练扩散 Transformer 变得比你想象的更简单。」
传统的歌声任务,如歌声合成,大多是在利用输入的歌词和乐谱生成高质量的歌声。随着深度学习的发展,人们希望实现可控和能个性化定制的歌声生成。
1%的合成数据,就让LLM完全崩溃了? 7月,登上Nature封面一篇论文证实,用合成数据训练模型就相当于「近亲繁殖」,9次迭代后就会让模型原地崩溃。
毫无疑问,多智能体肯定是 OpenAI 未来重要的研究方向之一,前些天 OpenAI 著名研究科学家 Noam Brown 还在 X 上为 OpenAI 正在组建的一个新的多智能体研究团队招募机器学习工程师。
诺贝尔物理学奖和化学奖被AI「包圆」后,人们再次确信:基础科学研究的范式,已经被AI从根本上改变。