
GPT-4o加钱能变快!新功能7秒完成原先23秒的任务
GPT-4o加钱能变快!新功能7秒完成原先23秒的任务OpenAI出了个新功能,直接让ChatGPT输出的速度原地起飞! 这个功能叫做“预测输出”(Predicted Outputs),在它的加持之下,GPT-4o可以比原先快至多5倍。
OpenAI出了个新功能,直接让ChatGPT输出的速度原地起飞! 这个功能叫做“预测输出”(Predicted Outputs),在它的加持之下,GPT-4o可以比原先快至多5倍。
今年,化学诺贝尔奖授予了AlphaFold,AI+Science受到空前的关注。人们惊叹于,仅仅是一个蛋白质结构预测模型,就能释放出如此巨大的行业潜力。 就在当下,在第三届中国生物计算大会上,全球规模最大的生命科学基础模型横空出世—— xTrimo V3,参数规模高达2100亿,覆盖蛋白质、DNA、RNA、细胞等七大主流模态。背后玩家正是来自李彦宏孵化创办的百图生科。
toC先走海外,国内聚焦toB。 这是大模型初创六小强之一零一万物最近宣布的战略转向。 就在今天,零一万物举行了一场toB战略发布会,会上表示,零一万物坚决走让用户产生价值的路线。
网络智能体旨在让一切基于网络功能的任务自动发生。比如你告诉智能体你的预算,它可以帮你预订酒店。既拥有海量常识,又能做长期规划的大语言模型(LLM),自然成为了智能体常用的基础模块。
算法设计(AD)对于各个领域的问题求解至关重要。大语言模型(LLMs)的出现显著增强了算法设计的自动化和创新,提供了新的视角和有效的解决方案。
3 月,江西南昌持续遭遇强对流天气,大树被连根拔起,民宅玻璃被吹落;9 月,上海的小伙伴在一周之内迎来了两次台风,高呼「活久见」。十一假期之前,内蒙古呼伦贝尔突降暴雪,前去「赏秋」的游客被打得措手不及。
2024年10月17日,非凡资本联合诸多合作伙伴在北京举行了“AIGC应用发展高峰论坛暨AIGC100年度评选”,此次盛会吸引了超过50位AI领域的演讲嘉宾和近千名AI相关从业者参与。
VQAScore是一个利用视觉问答模型来评估由文本提示生成的图像质量的新方法;GenAI-Bench是一个包含复杂文本提示的基准测试集,用于挑战和提升现有的图像生成模型。两个工具可以帮助研究人员自动评估AI模型的性能,还能通过选择最佳候选图像来实际改善生成的图像。
继6月短暂超越苹果市值后,英伟达再次超越苹果成为全球最高市值公司!
在大算力和大数据让基于统计的 AI 模型真正变得强大且有用之前,基于规则的系统长期以来是语言模型的主导范式。
生成式AI正在加速软件开发的速度,一方面帮助有经验的开发者提高效率,另一方面也让没有太多编程经验的人能够快速进入软件工程领域。因此,整个领域的速度在加快,开发出的软件也越来越多。
一个是开源,一个是MoE (混合专家模型)。 开源好理解,在大模型火热之后,加入战局的腾讯已经按照它自己的节奏开源了一系列模型,包括混元文生图模型等。
自打ChatGPT让人工智能这个概念迎来第二春,百度创始人李彦宏也重新活跃了起来,成为了几乎是最爱发声的互联网大佬。在此前先后发表AI终结程序员、开源模型会越来越落后等言论之后,有消息称在最近举行的百度2024年第三季度总监会上他又放话,“百度不碰Sora类的视频生成。”
未来的教育模式将是混合式的,AI导师能够为教师提供有力支持。
在本文中,我们想要解决GraphRAG系统中的一些常见误解。我们特别关注理解知识图谱构建技术和我们称之为“RAG-Native Graphs”所带来的细微差别。
Ichigo[1] 是一个开放的、持续进行的研究项目,目标是将基于文本的大型语言模型(LLM)扩展,使其具备原生的“听力”能力。
2023年ChatGPT横空出世,人工智能上半场开启近两年,海量企业加入AI赛道,却鲜有成功的、实现盈利的商业模式。
如果要说,谁是国内提示词第一人 那必须是李继刚老师 今年重出江湖,一口气写了好多牛逼的提示词,尤其是这个汉语新解,相信大家多少都看到过类似的图片。
AIGC产品浪潮,对于产品设计师来说或许是一个可以重燃设计热情,重新探索人们与技术进行新交互方式的契机。界面在不断进化,所以优秀产品设计的基础原理也比以往任何时候都更加重要。
Casetext 是一家已经做了 12 年的公司,最初用技术提高法律领域的文件处理效率,从 UGC 网站转型到 AI 技术方案,顺利找到 PMF,ARR 2000 万美元,估值 1 亿美元。
昨天,上周被各种热捧的「Daze」上线了,但本以为的冲榜并未到来。 「Daze」是一款可发送“自由式消息”的通讯应用,以 Z 世代为主要客群。
本文将带你构建一个多智能体新闻助理,利用 OpenAI 的 Swarm 框架和 Llama 3.2 来自动化新闻处理工作流。在本地运行环境下,我们将实现一个多智能体系统,让不同的智能体各司其职,分步完成新闻搜索、信息综合与摘要生成等任务,而无需付费使用外部服务。
在当前的LLM应用开发中,工程师们通常通过使用单一角色或专家视角的方式来处理复杂问题。这种单一视角虽然能够提供一定的专业性,但也经常因为专家视角的局限性带来偏见,影响输出的全面性和可靠性。
基于这一理念,DeepMind团队开发了一个双系统框架,称为Talker-Reasoner,旨在模仿人类的这两种思维模式。
近年来,生成式大型语言模型(LLMs)在各类语言任务中的表现令人瞩目,但在医疗领域的应用面临诸多挑战,尤其是在减少诊断错误和避免对患者造成伤害方面。
拥有「五感」的机器人离我们不远了。
机器人AI大脑成具身智能热门赛道
西风
创业中最危险的一句话:「我以后会赚钱」。 我开发的 AI 应用有 25 万用户,我感觉要起飞了,于是辞掉工作,准备大干一番。 结果没想到开局即巅峰,突然就完蛋了。 这几天,一个悲催的程序员创业故事在社交网络上流传,引发了人们的深思。
奥特曼在OpenAI伦敦开发者日上的最新采访,终于完整释出! 40分钟的采访过程中,奥特曼除了聊OpenAI未来模型发展方向、Agent、和最尊敬的竞争对手(就是此前碎片式走漏风声的几个问题)外,还就Scaling Law、半导体供应链、基础模型竞争成本、该雇佣什么年龄段的员工等十多个问题进行了快问快答。