上下文工程的Agent Skills来了,CC、Codex直接用,一周获2.3k star
上下文工程的Agent Skills来了,CC、Codex直接用,一周获2.3k starGitHub上最近出现了一个非常火的项目Agent-Skills-for-Context-Engineering,发布不到一周就斩获了2.3k Stars。为什么它能瞬间引爆社区?因为站在2025年末的节点上,我们已经受够了那些只存在于大厂白皮书里的Context Engineering(上下文工程) 理论。
GitHub上最近出现了一个非常火的项目Agent-Skills-for-Context-Engineering,发布不到一周就斩获了2.3k Stars。为什么它能瞬间引爆社区?因为站在2025年末的节点上,我们已经受够了那些只存在于大厂白皮书里的Context Engineering(上下文工程) 理论。
字节最新数学推理专用模型,刚刚刷新战绩:拿下IMO金牌成绩。
AI提供1%的灵感,人类提供99%汗水!密歇根州立大学物理学家许道辉,在AI启发下,重新思考量子力学本质,在顶刊《物理快报B》上发表了相关结论。
大家好,我是被智谱卷到的袋鼠帝。 昨天智谱刚把GLM-4.7放出来,群里就有老哥找我写文章了..
前脚刚听完罗永浩和 MiniMax 创始人闫俊杰的超长播客,然后就看到 MiniMax M2.1 发布了。
Agent 的状态数据分两种:会话内的临时上下文和跨会话的长期知识。
将多模态数据纳入到RAG,甚至Agent框架,是目前LLM应用领域最火热的主题之一,针对多模态数据最自然的召回方式,便是向量检索。
刚刚,由SciMaster团队推出的AI机器学习专家ML-Master 2.0,基于国产开源大模型DeepSeek,在OpenAI权威基准测试MLE-bench中一举击败Google、Meta、微软等国际顶流,刷新全球SOTA,再次登顶!目前该功能已在SciMaster线上平台开放waiting list,欢迎申请体验。
英伟达让AI仅靠「看直播」就学会了通用游戏操作。虚拟世界已成为物理智能的黑客帝国,看4万小时直播学会几乎所有游戏!
Epoch AI年终大盘点来了!出乎意料的是,AI没有停滞,反而变快了。
近年来,大语言模型的能力突飞猛进,但随之而来的却是愈发棘手的双重用途风险(dual-use risks)。当模型在海量公开互联网数据中学习时,它不仅掌握语言与推理能力,也不可避免地接触到 CBRN(化学、生物、放射、核)危险制造、软件漏洞利用等高敏感度、潜在危险的知识领域。
智谱作为「大模型第一股」赴港上市前夕,直接掏出了旗舰模型GLM-4.7并开源!
热门LoRA首次内置,控光换镜头实测可用。
视频生成模型总是「记性不好」?生成几秒钟后物体就变形、背景就穿帮?北大、中大等机构联合发布EgoLCD,借鉴人类「长短时记忆」机制,首创稀疏KV缓存+LoRA动态适应架构,彻底解决长视频「内容漂移」难题,在EgoVid-5M基准上刷新SOTA!让AI像人一样拥有连贯的第一人称视角记忆。
在代码大模型(Code LLMs)的预训练中,行业内长期存在一种惯性思维,即把所有编程语言的代码都视为同质化的文本数据,主要关注数据总量的堆叠。然而,现代软件开发本质上是多语言混合的,不同语言的语法特性、语料规模和应用场景差异巨大。
多模态大语言模型(MLLMs)已成为AI视觉理解的核心引擎,但其在真实世界视觉退化(模糊、噪声、遮挡等)下的性能崩溃,始终是制约产业落地的致命瓶颈。
你是否曾被AI视频生成的不连贯性所困扰?
还记得几个月前那个能随着音乐节拍自然舞动的 KlingAvatar 数字人吗?现在,它迎来了史诗级进化!
今天聊一聊怎么在RAG、agent场景中实现语义高亮(Semantic Highlight)。
在迈向通用人工智能的道路上,我们一直在思考一个问题:现有的 Image Editing Agent,真的「懂」修图吗?
今天,我又要来得罪人了。 甚至可以说,这篇文章发出来,可能会直接断了很多人的财路。
在国内,懂技术 —— 尤其是 AI 技术的年轻人,真的不缺崭露头角的机会。
视频生成领域的「DeepSeek时刻」来了!清华开源TurboDiffusion,将AI视频生成从「分钟级」硬生生拉进「秒级」实时时代,单卡200倍加速让普通显卡也能跑出大片!
为什么大模型厂商给了 128K 的上下文窗口,却在计费上让长文本显著更贵?
想用3D高斯泼溅(3DGS)重建一座城市?
参数越小,智商越高?Gemini 3 Flash用百万级长上下文、白菜价成本,把自家大哥Pro按在地上摩擦。谷歌到底掏出了什么黑魔法,让整个大模型圈开始怀疑人生?
现有的视频编辑模型往往面临「鱼与熊掌不可兼得」的困境:专家模型精度高但依赖 Mask,通用模型虽免 Mask 但定位不准。来自悉尼科技大学和浙江大学的研究团队提出了一种全新的视频编辑框架 VideoCoF,受 LLM「思维链」启发,通过「看 - 推理 - 编辑」的流程,仅需 50k 训练数据,就在多项任务上取得了 SOTA 效果,并完美支持长视频外推!
毋庸置疑!2025年title属于「Agent元年」。
在多智能体系统的想象中,我们常常看到这样一幅图景: 多个 AI 智能体分工协作、彼此配合,像一个高效团队一样攻克复杂任务,展现出超越单体智能的 “集体智慧”。
为什么Agent在演示时无所不能,到了实际场景却频频拉胯?