Anthropic发现AI「破窗效应」:只是教它偷个懒,结果它学会了撒谎和搞破坏
Anthropic发现AI「破窗效应」:只是教它偷个懒,结果它学会了撒谎和搞破坏刚刚,Anthropic 发布了一项新研究成果。今天,他们发布的成果是《Natural emergent misalignment from reward hacking》,来自 Anthropic 对齐团队(Alignment Team)。他们发现,现实中的 AI 训练过程可能会意外产生未对齐的(misaligned)模型。
刚刚,Anthropic 发布了一项新研究成果。今天,他们发布的成果是《Natural emergent misalignment from reward hacking》,来自 Anthropic 对齐团队(Alignment Team)。他们发现,现实中的 AI 训练过程可能会意外产生未对齐的(misaligned)模型。
正式入职小米还不到10天,罗福莉的首篇论文,这就来了!针对自驾与具身操作场景的知识迁移难题,MiMo团队提出并开源了全球首个打通这两大领域的跨具身(X - Embodied)基座模型——MiMo-Embodied。
首个拿下国际物理奥林匹克竞赛IPhO 2025理论考试金牌的开源模型,出自国产。上海人工智能实验室团队推出新模型家族,代号P1。在IPhO 2025理论考试中,P1-235B-A22B取得21.2/30分,成为首个达到该金牌线的开源模型,仅次于Gemini-2.5-Pro与GPT-5。
今天,来自快手可灵团队和香港城市大学的研究者们,正在尝试打破这一界限。他们提出了一个全新的任务范式——「视频作为答案」,并发布了相应模型VANS。而这项工作则开创性地提出了Video-Next Event Prediction任务,要求模型直接生成一段动态视频作为回答。
就在一周前,全宇宙最火爆的推理框架 SGLang 官宣支持了 Diffusion 模型,好评如潮。团队成员将原本在大语言模型推理中表现突出的高性能调度与内核优化,扩展到图像与视频扩散模型上,相较于先前的视频和图像生成框架,速度提升最高可达 57%:
最新PRBench基准可以测试AI在金融和法律领域的表现。结果显示,即使是顶尖大模型在处理复杂任务时也表现不佳,尤其在涉及重大经济后果的任务中。PRBench通过模拟真实场景和多轮对话,揭示了AI在专业领域的不足,强调开发更可靠AI系统的重要性。
专注推理任务的 Large Reasoning Models 在数学基准上不断取得突破,但也带来了一个重要问题:越想越长、越长越错。本文解读由 JHU、UNC Charlotte 等机构团队的最新工作
前沿AI竞赛在2025年11月达到高潮。48小时内,谷歌推出Gemini 3 Pro宣称在主要推理基准测试中领先,而OpenAI立即用GPT-5.1-Codex-Max反击,这是一款专门训练用于通过创新"压缩"(compaction)技术自主工作超过24小时的专业编码模型[43]。加上Claude Sonnet 4.5已确立的编码统治地位和激进的安全过滤器,开发者面临前所未有的选择:
由德克萨斯A&M大学、斯坦福大学、Snap公司、CU Boulder大学、德克萨斯大学奥斯汀分校、加州理工大学、Topaz Labs以及加州大学Merced分校的研究者联合提出的基于AI智能体的方法4KAgent针对不同类型的图像以及需求对图像进行智能修复并放大到4K分辨率,带来优秀的视觉感知效果。该工作已被NeurIPS 2025接收。
近日,AAAI 2026 公布了录用结果,该会议是是人工智能领域极具影响力的国际顶级学术会议之一。据悉本次会议共有 23680 篇投稿进入审稿阶段,最终 4167 篇论文被录用,录取率为 17.6%。
“What is meant often goes far beyond what is said, and that is what makes conversation possible.” ——H. P. Grice
沉默后爆发?
Google昨天伴随Gemini3.0pro一同发布了他们的AI IDE产品Antigravity《与Gemini 3.0一起发布的AI IDE「Antigravity」究竟有多厉害?》。其震撼性的三位一体全流程Agent体验让无数开发者直呼“Cursor危险了”。
Deep-Live-Cam 是一款开源的实时换脸与视频深度伪造(deepfake)工具,只需要一张人脸图片,就能在本地电脑上对摄像头画面或视频进行实时换脸。 支持 Windows / Linux / macOS,多种硬件加速(CPU / CUDA / CoreML / DirectML / OpenVINO),并内置不良内容检测与合规提示,定位是服务 AI 生成媒体行业的高效生产力工具。
扩散模型「去噪」,是不是反而忘了真正去噪?何恺明携弟子出手,回归本源!
最近半年,我阅读了业界关于 AI Agent 的工程实践:Anthropic 的 Context Engineering 论文、Manus 的工程分享、Cline 的 Memory Bank 设计等。同时自己也一直在做跟 AI Agent 相关的项目,如:Jta[1](开源的翻译 Agent,基于 Agentic Workflow)。
您的 AI 伙伴「游戏陪玩」版已上线。
看似轻描淡写,实则力透纸背。
何恺明又一次返璞归真。
在视觉处理任务中,Vision Transformers(ViTs)已发展成为主流架构。然而,近期研究表明,ViT 模型的密集特征中会出现部分与局部语义不一致的伪影(artifact),进而削弱模型在精细定位类任务中的性能表现。因此,如何在不耗费大量计算资源的前提下,保留 ViT 模型预训练核心信息并消除密集特征中的伪影?
前不久写了一期卡神做的 nanochat ,听朋友说咱们国产早就有类似的开源项目了:miniMind 。
“开组会是一场巨大的精神霸凌。”
大家都知道,图像生成和去噪扩散模型是密不可分的。高质量的图像生成都通过扩散模型实现。
在过去两年,大语言模型 (LLM) + 外部工具的能力,已成为推动 AI 从 “会说” 走向 “会做” 的关键机制 —— 尤其在 API 调用、多轮任务规划、知识检索、代码执行等场景中,大模型要想精准调用工具,不仅要求模型本身具备推理能力,还需要借助海量高质量、针对性强的函数调用训练数据。
智能体自进化,阿里开源了新成果。
无需重新训练,也能一键恢复模型的安全意识了。
人类高级视觉皮层在个体间存在显著的功能差异,而构建大脑编码模型(brain encoding models)—— 即能够从视觉刺激(如图像)预测人脑神经响应的计算模型 —— 是理解人类视觉系统如何表征世界的关键。传统视觉编码模型通常需要为每个新被试采集大量数据(数千张图像对应的脑活动),成本高昂且难以推广。
无需额外训练即可适配预训练生成模型的编辑方法,凭借灵活、高效的特性,已成为视觉生成领域的研究热点。这类方法通过操控 Attention 机制(如 Prompt-to-Prompt、MasaCtrl)实现文本引导编辑,但当前技术存在两大核心痛点,严重限制其在复杂场景的应用
MiniMax,今年真猛。
在基础模型领域,模型规模与性能之间的缩放定律(Scaling Law)已被广泛验证,但模型增大也伴随着训练成本、存储需求和能耗的急剧上升。如何在控制参数量的前提下高效扩展模型,成为当前研究的关键挑战。