Anthropic官宣PTC突破,中国开发者一年前就实现了
Anthropic官宣PTC突破,中国开发者一年前就实现了Anthropic发布了Programmatic Tool Calling(PTC)特性,让Claude通过代码编排工具执行,降低token消耗、减少延迟并提升准确性。
Anthropic发布了Programmatic Tool Calling(PTC)特性,让Claude通过代码编排工具执行,降低token消耗、减少延迟并提升准确性。
全球首个可大规模落地的开源原生多模态架构(Native VLM),名曰NEO。要知道,此前主流的多模态大模型,例如我们熟悉的GPT-4V、Claude 3.5等,它们的底层逻辑本质上其实玩的就是拼接。
大模型总是无法理解空间,就像我们难以想象四维世界。
DeepSeek 一发布模型,总会引起业内的高度关注与广泛讨论,但也不可避免的暴露出一些小 Bug。
Vision–Language–Action(VLA)策略正逐渐成为机器人迈向通用操作智能的重要技术路径:这类策略能够在统一模型内同时处理视觉感知、语言指令并生成连续控制信号。
这篇论文由北京航空航天大学、阿里巴巴、字节跳动、上海人工智能实验室等几十家顶尖机构联合撰写,全文长达303页,是对当前“代码大模型(Code LLMs)”领域最详尽的百科全书式指南。
本文为Milvus Week系列第三篇,该系列旨在分享Milvus的创新与实践成果,以下是DAY3内容划重点: Milvus2.6中,Zilliz借助Geolocation Index for Milvus,首次将地理空间数据与向量检索融合,使 AI 可以在理解语义的同时,理解空间。
最近研究发现,大模型在判断逻辑谬误时容易「想太多」,误报正常句子,但在确定有谬误后,其分类能力较强。研究人员构建了首个高质量英文逻辑谬误基准SMARTYPAT-BENCH,并开发了基于Prolog的逻辑谬误自动生成框架SMARTYPAT,为大模型逻辑能力评估提供新思路,可用于谬误识别、辩论教育等领域。
昨日,有位推特博主晒出了国内几大开源模型在轻量级软件工程 Agent 基准测试 mini-SWE-agent 上的成绩。该基准主要测试大模型在真实软件开发任务中的多步推理、环境交互和工程化能力。
在AIGC的浪潮中,3D生成模型(如TRELLIS)正以惊人的速度进化,生成的模型越来越精细。然而,“慢”与计算量大依然是制约其大规模应用的最大痛点。复杂的去噪过程、庞大的计算量,让生成一个高质量3D资产往往需要漫长的等待。
想象你在准备早餐:你不会先写一份详细到「左手抓鸡蛋、右手拿碗、手腕旋转 45 度敲击蛋壳」这样的清单,也不会只有一个笼统的计划叫「做个早餐」,然后不知所措。
DeepSeek V3.2的Agentic能力大增,离不开这项关键机制:Interleaved Thinking(交错思维链)。Interleaved Thinking风靡开源社区背后,离不开另一家中国公司的推动。
就在前天,DeepSeek 一口气上新了两个新模型,DeepSeek-V3.2 和 DeepSeek-V3.2-Speciale。
2027年将是人类命运的关键节点!Anthropic首席科学家Jared Kaplan预警,人类将在2027至2030年面临是否允许AI进行递归自我进化的终极抉择。Anthropic最新发布(12月3日)的内部深度调查《AI如何改变工作》,正在揭示这场宏大叙事下微观个体的命运——工程师的「空心化」和学徒制的崩溃。
OpenAI搞了个新活:让ChatGPT自己“坦白从宽”。
继今年5月提出MeanFlow (MF) 之后,何恺明团队于近日推出了最新的改进版本—— Improved MeanFlow (iMF),iMF成功解决了原始MF在训练稳定性、指导灵活性和架构效率上的三大核心问题。
在人工通用智能(AGI)的探索征程中,具身智能 Agents 作为连接数字认知与物理世界的关键载体,其核心价值在于能够在真实物理环境中实现稳健的空间感知、高效的任务规划与自适应的执行闭环。
最近口述采样很火。如果您经常使用经过“对齐”训练(如RLHF)的LLM,您可能已经注意到一个现象:模型虽然变得听话、安全了,但也变得巨“无聊”。
当你阅读《红楼梦》《哈利·波特》《百年孤独》等长篇小说时,读着读着可能就忘记前面讲了什么,有时还会搞混人物关系。AI 在阅读长文章的时候也存在类似问题,当文章太长时它也会卡主,要么读得特别慢,要么记不住前面的内容。
叶问蹲、跳舞、跑步,一个策略全搞定!
如今 LLM 的语言理解与生成能力已展现出惊人的广泛适用性,但随着 LLM 的发展,一个事实越发凸显:仅靠语言,仍不足以支撑真正的智能。
医药圈彻底炸了!全网都在玩Gemini,却没看到生物学界再现「AlphaFold时刻」。
这项工作由伊利诺伊大学香槟分校 (UIUC)、哈佛大学、哥伦比亚大学和麻省理工学院 (MIT) 的合作完成 。
在人工智能快速发展的今天,大语言模型已经深入到我们工作和生活的方方面面。然而,如何让AI生成的内容更加可信、可追溯, 一直是学术界和工业界关注的焦点问题。想象一下,当你向ChatGPT提问时,它不仅给出答案,还能像学术论文一样标注每句话的信息来源——这就是"溯源大语言模型"要解决的核心问题。
本文为Milvus Week系列第二篇,该系列旨在分享Zilliz、Milvus在系统性能、索引算法和云原生架构上的创新与实践,以下是DAY2内容划重点: Struct Array + MAX_SIM ,能够让数据库看懂 “多向量组成一个实体” 的逻辑,进而原生返回业务要的完整结果
上周,X博士发布了《中国In-App AI生态演进》报告,揭示了国内移动互联网下半场关于“意图主权”的隐秘争夺。 今天,X博士将目光投向更广阔的全球赛道——《ChatGPT“嵌入”社交链:AI社交从“
大模型最广泛的应用如 ChatGPT、Deepseek、千问、豆包、Gemini 等通常会连接互联网进行检索增强生成(RAG)来产生用户问题的答案。随着多模态大模型(MLLMs)的崛起,大模型的主流技术之一 RAG 迅速向多模态发展,形成多模态检索增强生成(MM-RAG)这个新兴领域。ChatGPT、千问、豆包、Gemini 都开始允许用户提供文字、图片等多种模态的输入。
“既然我可以直接使用 PyTorch,为什么还要费心使用 CUDA 呢?”
VLA模型性能暴涨300%,背后训练数据还首次实现90%由世界模型生成。
arXiv最新政策禁止直接接收未经同行评审的综述和立场论文,以应对AI生成论文的泛滥,但堵不如疏。多伦多大学、清华、北大等18所国内外顶尖高校联合发布新平台aiXiv,支持AI和人类共同撰写、评审和迭代科研成果,采用多阶段AI同行评审机制,提升效率和质量。