基于深度学习和噪声转移矩阵的复杂岩性识别方法

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
基于深度学习和噪声转移矩阵的复杂岩性识别方法
申请号:CN202410732197
申请日期:2024-06-06
公开号:CN118736274A
公开日期:2024-10-01
类型:发明专利
摘要
本发明涉及的是基于深度学习和噪声转移矩阵的复杂岩性识别方法,它包括:获取岩芯图像,形成具有标签噪声的岩芯图像数据集;构建ResNet神经网络模型,利用岩芯图像数据集对模型进行预训练,计算岩芯图像数据集的噪声转移矩阵和噪声率;再构建两个ResNet神经网络模型,基于Co‑teaching思想,同时训练这两个模型,更新模型参数;在两个模型训练过程中,使用噪声转移矩阵对损失函数进行修正,以修正后的损失更新模型参数,得到岩性识别模型;用岩性识别模型对未标注岩芯样本进行岩性预测,可视化展示预测结果。本发明采用Co‑teaching技术和噪声转移矩阵相结合,能够高效准确识别含噪声数据集中的未知岩性。
技术关键词
复杂岩性识别方法 岩芯图像 样本 矩阵 更新模型参数 钻井取芯 噪声数据 标签 锚点 噪声模型 神经网络模型训练 电子表格软件 传播算法 机器学习库