摘要
本发明涉及高光谱遥感技术领域,具体涉及一种基于高光谱数据的森林叶绿素含量综合估算方法,基于特定步长叶绿素含量下的高光谱反射率数据,获取敏感波段,筛选并计算光谱特征指数,构建综合反演模型,得到森林叶绿素含量反演结果。通过改变植被辐射传输模型的关键变量,获取理想状态下特定步长叶绿素含量的森林叶片反射率数据;依据敏感波段的波长范围筛选特征光谱指数,综合半经验统计方法与微粒群参数优化方法,构建基于特征指数的叶绿素含量的融合算法回归预测模型;通过分析模型预测结果的符合度指标,结合决定系数和敏感性系数,形成面向特定物候期的融合半经验方法和物理方法的森林叶绿素含量估算方法集,解决现有的叶绿素含量估算方法反演精度较低的问题。