摘要
本发明公开了一种基于大语言模型的安全测试方法,涉及人工智能和网络安全领域,包括:步骤S1:根据攻击场景和目的生成攻击载荷指令;步骤S2:基于攻击载荷指令,调用若干开源大语言模型直接生成攻击载荷;步骤S3:将生成的攻击载荷放入沙箱环境中进行测试,挑选出能够正确执行的有效攻击载荷,形成有效攻击载荷数据集;步骤S4:对有效攻击载荷数据集中的有效攻击载荷进行攻击测试和评估,筛选出高质量攻击载荷,形成高质量攻击载荷数据集;步骤S5:采用高质量攻击载荷数据集,对大语言模型进行微调,使大语言模型的攻击载荷生成能力得到增强。本发明,能够对网络系统进行测试,提升网络安全防御能力,以应对日益复杂的网络安全威胁。