摘要
本发明涉及一种基于多模态数据融合的水质指标预测的方法,特别是涉及一种基于瓶颈注意模块(Bottleneck Attention Module,BAM)、低秩多模态融合(Low‑rank Multimodal Fusion,LMF)、注意力机制、卷积神经网络、倒置Transformer(Inverted Transformer,ITransformer)模型的水质指标预测方法。首先,分别从获取的遥感图像数据和水质指标历史数据中提取图像和水质特征序列。然后,基于BAM和LMF将图像和水质特征进行融合,获取多模态融合特征。最后,将多模态融合特征输入ITransformer模型,预测未来长期的水质指标值,最终获取精准度较高的水质指标预测结果。