摘要
本发明涉及电池技术技术领域,特别是指一种基于多源信息的电池健康状态智能预测方法及装置。所述方法包括:采集并处理原始数据,获得处理后声发射参数数据以及处理后循环老化参数数据;使用门控神经网络,对处理后声发射参数数据以及处理后循环老化参数数据进行权重分配,获得数据权重;根据卷积神经网络结构、长短期神经网络结构和SOFTS模型的STAD模型结构进行模型构建并训练,获得电池容量预测模型;基于数据权重,将处理后声发射参数数据以及处理后循环老化参数数据输入电池容量预测模型进行预测,得到电池健康状态预测值。本发明是一种基于多源信息的高效、准确的电池健康状态智能预测方法。