摘要
本发明属于掌纹识别技术领域,具体公开了一种基于轻量级风格对齐和特征对齐的跨域掌纹识别方法。包括:S1构建并基于带有标签的原始域数据预训练用于掌纹识别的深度学习模型,该模型包括了特征提取器和全连接层分类头;S2利用训练好的基于统一的一元风格迁移模型的生成器G根据带有标签的原始域数据和不同的风格信息sc生成不同的带有标签的伪目标域数据;S3基于带有标签的伪目标域数据pT和不带标签的真实目标域数据,继续训练所述深度学习模型,进而针对目标域调整其参数;S4基于调整好的深度学习模型进行目标域的掌纹识别。本发明在减少资源消耗量以及计算量的前提下,解决现存的因环境、设备等变化带来的数据偏移问题。