摘要
本发明公开了一种应对复杂外部环境变化的风力发电机叶片健康状态实时判别及损坏程度预测的智能故障诊断方法。所述方法包括如下步骤:数据驱动孪生模型的建立,孪生模型残差器生成,基于残差的故障征兆信息提取,智能故障诊断器的训练。在考虑模型不确定性、匹配和非匹配干扰影响下,利用输入‑输出数据建立符合振动状态(模拟外部环境风力载荷)的无故障模砂眼故障模型、裂纹故障以及断裂故障模型,提取基于各类不同故障状态下残差统计特性的故障征兆信息,建立基于专家的故障征兆模糊子集与故障类型的逻辑映射关系,实现在无需预先给出有关模式的经验知识和识别函数的基础上,通过自学习机制自动形成基于孪生模型残差器的风机叶片表面损伤智能健康状态、健康程度监测与预测,提高风机运行可靠性。