摘要
本发明公开了一种基于改进YOLOv8模型的番茄分割方法,该方法主要包括寻找类别丰富的番茄分割数据集,对其进行数据增强处理并进行手动标注,扩充数据集数量,对YOLOv8n模型进行改进,主干替换为MobileNetv3使模型轻量化,对YOLOv8n网络头部引入DCNv2可变型卷积能更好的适应目标的形态,并在头部添加通道注意力机制关注特征层的通道信息和空间信息。结果表明,改进后的算法类别平均精度为91.8%,本方法在识别准确率和速度两方面达到了实用化的要求,进一步推动番茄采摘机器人及智慧农业的发展。