摘要
本发明涉及电力机器人技术领域,尤其涉及一种电力机器人全局路径自动规划方法、系统、设备及介质,包括构建稠密点云模型的图表示;根据电力机器人位姿信息和环境特征,为每个路径决策点构建决策条件树;遍历决策条件树的每个条件分支,利用图论算法在稠密点云模型的图表示中求解从电力机器人起点到各个巡检目标的最短路径,生成潜在预选路径集合;基于潜在预选路径集合构建路径依赖网络,确定路径间的条件依赖关系,并利用基于环境感知的动态路径优化算法进行迭代优化,获取最优巡检路径。本发明提出的方法不仅提高了路径规划的效率和适应性,而且增强了机器人在面对环境变化时的决策能力,确保电力机器人能够高效准确地完成巡检任务。