摘要
本发明公开了一种基于子空间距离的跨用户警觉度监测方法,解决了跨用户警觉度监测中的模态数据单一、相关性不足以及误差波动大的问题,实现方案:数据采集与预处理;构建跨用户警觉度监测模型;模型训练;用户警觉度监测。本发明使用源域与目标域特征,计算子空间距离、碱基错配惩罚与均方根误差作为模型总损失,最小化总损失训练模型,使用模型监测用户得到警觉度值。本发明通过使用多模态数据融合以及基于子空间距离的迁移学习算法,提高了跨用户警觉度监测过程中的精度与稳定性,降低警觉度监测误差,用于人机交互、交通驾驶、航空飞行等领域中对用户进行实时警觉度连续监测。