摘要
本发明公开了基于补丁幅值和熵引导策略的活体检测方法与装置,利用SE模块筛选出图片中的k个显著补丁,对于每个显著补丁,其幅值会与其他同类别的图片的补丁的幅值进行随机混合并与显著补丁的相位信息结合,以生成多样化的数据。随着多样化补丁的不断生成,间接鼓励活体检测模型利用脸部的其他区域信息来判断真假人脸。此外,本发明使用熵引导的难例挖掘策略来挖掘难例,能够根据token中包含的总信息量来动态调整样本图像的重要性权重,使活体检测模型在人脸关键区域被遮挡的情况下仍能结合剩余的特征信息以做出鲁棒性的判断。本发明能够缓解活体检测模型的过拟合问题,并提升活体检测模型的泛化能力。