摘要
本发明涉及了一种基于PSO‑MPC融合的多智能体路径规划方法,涉及人工智能路径规划技术领域。对多智能体路径规划是一个具有挑战性的任务,涉及缩短路径长度、保持安全行驶距离。本文提出一种PSO与MPC融合的多智能体路径规划算法;在该算法中,首先,利用PSO算法规划全局路径,并引入多目标点的导向函数、权重因子自适应函数,来减少路径长度;其次,以全局路径作为MPC实时跟踪的参考轨迹,并引入安全的预测点、控制智能体函数的行驶速度,从而保持智能体行驶的安全性。最后,在仿真实验中与传统PSO、MOPSO以及蚁群等其他算法的对比实验表明,本文提出的算法形成的全局路径长度更短,收敛速度更快;智能体时刻位于安全区域中,且形成的路径更加光滑。