摘要
本发明涉及基于小波神经网络的UPFC设备故障预测方法,包括:定义统一潮流控制器的故障变量;对故障变量进行分类,并定义用于设备状态监测、故障预测的数据采集结构;获取统一潮流控制器的各个节点的信号数据,进行滤波、A/D转换后对其分类编码;采用小波神经网络构建设备故障预测模型;将实时信号数据输入到训练好的设备故障预测模型,得到设备故障预测模型输出的设备状态预测结果;根据设备状态预测结果,判断有无设备故障;对预测得到的设备故障发出故障预警信号。本发明实现了多维度的全方位的UPFC在线状态监测、故障诊断和故障预警,提前预测UPFC装置的具体故障信息,有效保护装置运行安全,避免因UPFC设备故障造成对其他电力电子原件的损伤。