摘要
本发明公开了一种电力负荷预测方法和系统,方法包括:获取电力系统的原始数据,对获取的原始数据进行预处理;对信息获取优化算法IAO对进行优化;采用优化的奇异谱分析法SSA将数据分解为多个IMF分量;所述SSA通过改进的IAO算法进行优化,采用模糊熵FE聚合的方法将分解后的IMF分量根据熵值分离为高频分量和低频分量;采用格拉姆角差场GADF将高频分量转化为二维图像;分别将二维图像数据和低频分量分别输入到TEMPO模型和TSMixer模型中训练,并利用贝叶斯优化算法对TSMixer模型的超参数进行优化,得到电力负荷预测模型;对电力负荷预测模型进行训练,采用训练后的电力负荷预测模型对电力负荷进行预测,得到电力负荷预测结果;本发明相比传统方法可有效提高对电力负荷预测的准确性。