摘要
本发明公开了一种基于多层表征学习的无人机自适应巡检方法,包括自动粗检和自适应细检两个阶段,逐层学习桥梁的空间结构、构件特性和病害特征。在自动粗检阶段,结合空间聚类后处理方法和点云语义分割网络,快速学习桥梁构件的实例属性。随后,利用模拟视场模型和降维技术对点云空间进行压缩和转换,指导无人机在平面几何中进行高效而全面的空间巡查。在自适应细检阶段,利用空间‑通道双维度优化的混合卷积结构Light‑PVIT,学习并提取自动粗检阶段中的病害特征作为先验信息。这些信息指导无人机在小视场下对病害区域进行精细的检测。本发明无人机自适应巡检方法显著提升了桥梁巡检的效率和精度,为桥梁维护工作提供了可靠的技术支持。