一种基于图卷积网络的轴承故障诊断方法、装置及设备

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
一种基于图卷积网络的轴承故障诊断方法、装置及设备
申请号:CN202411479689
申请日期:2024-10-23
公开号:CN119004240B
公开日期:2025-03-28
类型:发明专利
摘要
本发明公开了一种基于图卷积网络的轴承故障诊断方法、装置及设备,涉及旋转机械故障检测技术领域,本发明利用基于邻近算法KNN的关联图构造法和节点嵌入法将目标域数据和源域数据构造为特征节点分类连接的关联图,使其建立起目标域数据和源域数据之间的内在关联关系,从而缩小目标域数据和源域数据的特征分布偏差,而后引入伪标签一致性学习策略调整分类器决策边界使其更准确地对目标域数据进行分类,并同时使用自适应全局阈值和自适应局部阈值获取准确分类后的目标域数据的平均置信度来计算全局阈值,以全局阈值判断滚动轴承的诊断结果;可捕捉到目标域数据内更深层次、更复杂的故障特征信息,因而对滚动轴承的故障识别的准确度大幅提升。
技术关键词
轴承故障诊断方法 特征提取模块 邻近算法 网络 滚动轴承 标签 样本 空间结构特征 顶点 旋转机械故障检测 轴承故障诊断装置 节点 方程 故障特征信息 分类器决策 数据分类 层级 无故障 超参数