摘要
本发明公开了一种基于神经网络的多标签文本分类方法及装置,包括:采集多标签文本数据形成训练样本;对所述训练样本进行词嵌入和标签嵌入,分别获得词向量和标签向量;建立初始的CNN‑BiLSTM‑ATTENTION神经网络模型,CNN‑BiLSTM‑ATTENTION神经网络模型包括CNN层、BiLSTM层以及ATTENTION层;对CNN‑BiLSTM‑ATTENTION神经网络模型进行训练直到所述CNN‑BiLSTM‑ATTENTION神经网络模型收敛;接收待分类的文本数据并输入至收敛后的CNN‑BiLSTM‑ATTENTION神经网络模型,输出分类结果;该方法适用于多维标签向量分类的场景。