摘要
本发明公开了一种基于多模态条件扩散模型的视频异常检测方法,属于视频异常检测技术领域;方法为:对视频进行预处理,生成视频时空立方体和光流时空立方体;构建扩散模型,获得异常分数;将重建异常分数和预测异常分数进行加权计算;对获得的最终异常分数进行评估,完成视频异常检测。本发明通过光流重建和视频帧预测的多任务结合方式,异常更容易被区分;融合多模态数据,捕捉更多维度的特征信息,提高异常检测的精度;使得模型在处理噪声和复杂背景时更加稳定,提升异常检测的稳定性;通过重建后的光流作为指导未来帧预测的条件,扩大异常预测帧与原始帧之间的预测误差,缩小正常预测帧与原始帧之间的预测误差,保证训练效果和性能。