摘要
本发明属于情感分析技术领域,具体涉及一种多模态信息融合的动态拓扑层次结构情感分析方法,该方法通过提取图像特征和文本特征;通过多头注意力机制对图像特征和文本特征进行对齐,得到对齐后的图文特征向量;将图文特征向量映射到动态拓扑层次结构中,并使用高维扩展编码方法对图像和文本的多模态特征进行融合和高维扩张,得到图像特征和文本特征的高维扩展编码特征,并输入到情感分类器中,得到积极、中性、消极三类情感分类结果。本发明结合深度学习的多模态特征对齐与融合策略,能够在不均衡数据集上提升情感分类的准确性和适用性,为多模态情感分析提供了有效的技术解决方案。