摘要
本发明提供了一种轻量级的驾驶员分心行为检测方法,属于计算机视觉技术领域。解决了分心驾驶检测算法模型结构复杂,参数量大,以及模型轻量化与检测精度之间的不平衡技术问题。其技术方案为:包括以下步骤:S1:采集分心驾驶行为数据图片,构建分心驾驶行为数据集;S2:以YOLOv8n模型为基础构建轻量级的分心驾驶检测网络ASU‑YOLO;S3:使用制作的分心驾驶行为数据集对构建的ASU‑YOLO网络模型进行训练,得到轻量级的分心驾驶检测模型;S4:通过训练好的模型对分心驾驶行为进行检测。本发明的有益效果为:本发明在减少算法的参数量与计算量的同时提高模型的检测精度,实现模型的轻量化,满足实时检测的需求。