摘要
本发明提供一种基于深度学习的髁突MRI医学图像分割方法,涉及医学影像处理与3D图像分割技术领域,本发明首先利用卷积神经网络提取髁突区域的基础特征,并将CNN输出的特征图展平后作为Transformer模型的输入,结合Transformer模型的核心机制以提升全局感知能力和边缘细节捕捉的精度;采用跳跃连接机制,将初步提取的局部特征与全局信息融合,构建成整体的结构,从而进一步提升分割性能;该基于CNN和Transformer模型结合的深度学习分割方法显著提高了髁突的分割精度,使得髁突的全局结构和边缘细节能够被精确捕捉,从而克服了传统方法在复杂结构边界模糊和分割稳定性不足方面的限制。