摘要
本发明公开了一种面向高效的开放词汇全景分割方法,包括以下步骤:S1、基于多尺度特征提取器和轻量级聚合器进行视觉特征提取和聚合;S2、利用文本编码器对任意类别词汇进行编码,得到文本嵌入S3、基于词汇感知选择模块提升视觉聚合特征的语义理解,减轻掩码解码器的特征交互负担;S4、基于双向动态嵌入专家,通过动态分配专家权重,生成具有语义感知和空间感知的实例嵌入;S5、基于轻量级解码器,使用对象核逐层进行掩码预测和细化,利用对象核和文本嵌入进行点积作为类别预测;该方法在实现相当性能的同时,旨在减少模型计算开销、加快推理速度,具有显著的实用价值和应用前景。