摘要
本发明公开了一种干旱事件影响下植被恢复时长的量化预测方法,包括如下步骤:提取研究区各格点周尺度植被状态指数和土壤含水量的时间序列;根据植被状态指数时间序列得到逐格点的植被异常状况;基于土壤水分位数方法识别研究区的土壤干旱事件,提取逐格点的干旱典型特征;结合干旱事件以及对应的植被异常状况,绘制植被累积距平曲线,通过识别植被恢复的起止时刻之间的间隔来量化植被恢复时长;引入极端梯度提升树模型,训练并预测未来时刻旱情发生后植被的恢复时长。本发明为量化植被恢复时长提供了新的途径,基于机器学习算法建立了干旱影响下植被恢复时长的预测方法,为评估生态系统对干旱的响应提供技术支撑。