摘要
本发明提供一种基于卷积神经网络的工件故障诊断方法,涉及机械故障诊断技术领域,包括:获取工件的振动数据以及目标神经网络模型,目标神经网络模型包括特征提取模块,特征提取模块包括多尺度可分离小波卷积模块和动态融合注意力模块,动态融合注意力模块包括将原始空间注意力模块的卷积层替换为三个并行卷积组成的多尺度卷积层的多尺度空间注意力子模块,动态融合注意力模块包括并行连接的通道注意力子模块和多尺度空间注意力子模块。本发明针对于工件的故障诊断,设计了一种基于多尺度小波卷积与融合注意力的神经网络模型,可有效提取并融合工件振动信号中的关键特征,能够在工况复杂的场景下准确进行故障诊断。