基于深度神经网络的工业园区污水水质参数预测方法

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
基于深度神经网络的工业园区污水水质参数预测方法
申请号:CN202511452818
申请日期:2025-10-13
公开号:CN120930078A
公开日期:2025-11-11
类型:发明专利
摘要
本发明涉及工业园区污水水质预测技术领域,具体而言,涉及基于深度神经网络的工业园区污水水质参数预测方法,包括:获取工业园区污水排放口的多模态时间序列数据;构建工业园区污水水质参数预测模型;定义并执行基于遗传算法的自适应多目标优化算法,以求解工业园区污水水质参数预测模型的最佳参数配置,自适应多目标优化算法通过迭代进化,最大化用于评估模型综合性能的预设适应度函数的值;选取适应度函数值最高的模型参数配置作为最终预测模型;将工业园区污水水质参数预测模型部署于工业园区污水监控终端,接收实时待监测污水数据并输出工业园区水质参数的预测结果。本发明显著提升了工业园区污水水质参数预测的可靠性与决策透明度。
技术关键词
工业园区 水质参数预测方法 深度神经网络 污水 关系建模 矩阵 序列 工况特征 时序 图像特征向量 门控循环单元网络 多模态 遗传算法 水质预测技术 Softmax函数 变分自动编码器 拉丁超立方采样 数据