基于深度学习的智能气候降尺度方法及系统

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
基于深度学习的智能气候降尺度方法及系统
申请号:CN202511460674
申请日期:2025-10-14
公开号:CN120931493A
公开日期:2025-11-11
类型:发明专利
摘要
本发明公开了基于深度学习的智能气候降尺度方法及系统,涉及气候降尺度数据处理技术领域。该基于深度学习的智能气候降尺度方法,包括:辅助特征冗余监测;气候降尺度数据负荷监测;模型适配性监测;情景适配性监测。本发明通过进行气候降尺度预处理数据冗余判别以决定是否需要辅助特征去冗余处理,其次进行气候降尺度预处理数据负荷分析以决定是否需要轻量化预处理,最后进行模型适配性分析以决定是否需要进行情景共性分析,达到了提升高分辨率气候变化情景预估数据时效性的效果,解决了现有技术中存在高分辨率气候变化情景预估数据时效性低的问题。
技术关键词
降尺度方法 数据冗余 气候变化情景 深度学习模型训练 监测模块 变量 指数 负荷 浅层特征提取 基准 总量 冗余特征 数据项 指标 标记