一种面向边缘计算的基于轻量级时序异常行为识别方法
# 热门搜索 #
大模型
人工智能
openai
融资
chatGPT
AITNT公众号
AITNT APP
AITNT交流群
搜索
首页
AI资讯
AI技术研报
AI监管政策
AI产品测评
AI商业项目
AI产品热榜
AI专利库
寻求报道
一种面向边缘计算的基于轻量级时序异常行为识别方法
申请号:
CN202511476954
申请日期:
2025-10-16
公开号:
CN120954104A
公开日期:
2025-11-14
类型:
发明专利
摘要
本发明公开了一种面向边缘计算的基于轻量级时序异常行为识别方法,是在MobileInst骨干网络的特征提取器与解码器之间设置LSTM或GRU模块,构建识别模型;将识别模型训练之后部署在边缘设备上进行异常行为识别。本发明解决了基于深度学习的异常行为检测方法依赖硬件计算能力、难以在边缘设备部署的问题,用于基于边缘的实时异常检测,在资源受限的环境中实现高性能的异常检测,提高公共安全水平。
技术关键词
识别方法
识别模型训练
实例分割
局部细节特征
多尺度局部特征
特征提取器
sigmoid函数
机制
时空融合特征
局部解码器
高层语义信息
特征金字塔网络
多尺度特征融合
时序特征
模块
生成多尺度