摘要
本发明公开了一种基于强化学习驱动的真空炉加热策略动态调整方法,属于真空炉加热控制技术领域。该方法包括:获取真空炉特性数据并构建真空炉动态仿真模型;构建含状态感知模块、策略网络、价值网络、经验回放缓冲区、参数更新单元、动作执行单元和奖励接收单元的智能体,并将智能体放入真空炉动态仿真模型经多步骤交互训练得到动态加热控制模型;将动态加热控制模型集成到真空炉的控制软件,真空炉运行时实时监测运行状态数据,基于预设性能阈值判断是否对动态加热控制模型重新训练。本发明通过强化学习驱动加热策略动态调整,能提升温度控制精度和优化能耗,增强真空炉加热过程的适应性与稳定性,提升真空炉加热效果。