前段时间,Nano Banana Pro 发布,有网友在我们的留言区评论,说前端程序员已经不知道「死了」多少次了。
如果要把这两年职场人的心理变化画一条曲线,我想大概率是一条过山车,从最初的震惊与狂热,到中期的焦虑与恐慌,再到现在的……疲惫与祛魅。
是的,疲惫。

技术成熟度曲线
我们尝试着无数个声称能颠覆工作的 AI 工具,但回归到真实的周一上午,情况往往是这样的:你在一边狂敲提示词,在另一边小心翼翼地把生成的文本复制回文档,然后花半小时重新调整那个被毁得面目全非的表格格式 。
这种割裂感,真的很难让人把它和生产力三个字划等号。
很多时候,我们手里的 AI 更像是一个用来炫技的玩具,而不是那个能真正帮你把项目彻底搞定(DONE)的智能伙伴 。

「AI 原生,效率新生」—— WPS AIDONE 办公专场活动
前几天,我们和 WPS AI 在珠海金山软件园一起举办了「AI原生· 效率新生- AIDONE办公专场」。
爱范儿副主编、 APPSO 负责人李超凡,和金山办公 Office AI 负责人刘拓辰,在现场分享了他们对于 AI 原生与效率的看法,如何才能做到 AIDONE;还有 WPS AIPPT 的上手体验等。
从现场回来,我隐约意识到,
可能我们之前打开 AI 的方式,都太累了。当 AI 和 Office 彻底融为一体之后,办公这件事完全可以从忙于交付,变成更专注思考。
什么是 AI-Native(AI 原生)?是会用 Midjourney 生成几张二次元图片?还是能熟练背诵某套万能提示词模版?又或者是用那些所谓的一句话生成产品,手搓一个项目 Demo。
我想这些都不是。

爱范儿副主编、APPSO 负责人李超凡主题演讲「如何成一个 AI- Native 职场人」
如同我们在现场分享的观点一样,AI 原生是一种「生物本能」,贯穿到我们工作的每一个环节。
像是之前做 AI 编程的 Lovable 团队,他们整个公司只有 35 个人,成立短短 7 个月,年收入就做到了 8000 万美金。还有创作者顶流,用 AI 写深度长文,年收入达到了 400万美金的 Packy McCormick。
凭什么?就凭他们把 AI 变成了某种生物本能;
他们不是雇了更多的员工,而是雇了更多的 AI。
对于真正的 AI Native 职场人来说,区别也不在于我们用了多贵的工具,而在于第一反应。遇到难题时,你的脑回路是「这事儿我该怎么熬夜肝出来」,还是「这事 AI 能帮我做吗?我该怎么指挥它?」。
但这里也有个巨大的悖论:如果指挥 AI 的成本,比我自己做还要高,那这种「本能」就是反人性的。
这恰恰是目前大多数 AI 产品的死穴,它们离我们的工作流太远了。经常是,我们得跳出文档,去浏览器里求助,然后再把结果搬运回来。这种反复横跳,足以打断任何珍贵的「心流」。

不打断心流的 AI 伴写
所以,AI-Native 该怎么实现。
我们的判断是,在最熟悉的 Office 软件里「原生」地使用 AI,才是成为 AI-Native 职场人的最短路径。
如果说 AI 工具的割裂感是 AI-Native 的痛点,那么金山办公的 Office AI 负责人刘拓辰,则给出了解法。

金山办公 Office AI 负责人主题演讲「原生 Office AI,从交互到交融」
他在现场提到了一个贯穿全场的关键词,「原生 Office AI」,而要做到原生 AI,他带来了一个更前沿的产品哲学:Agentic Software(智能体软件)。
这不只是一个新名词,本质上重新定义了 AI 在软件里的角色。在 WPS 的设计理念里,真正的 Agentic 应该像一个训练有素的助理,拥有两个关键能力:大脑和双手。
它得先有一个会思考的大脑,具备自主规划能力。 以往的模型是我们问一句它答一句,完全被动响应。而在 WPS AI 里,当我们抛出一个模糊的需求,比如「做一份年中复盘 PPT」。
AI 会先像人一样思考:复盘需要哪些模块?需要调用哪些数据?它会主动拆解任务路径,规划每一步怎么走,甚至在执行后进行反思;「我做出来的结果符合预期吗?如果不符合,我再重新规划修正」。

但光有想法还不够,它更需要一双干活的手,让它能无损调用各种工具。 这是金山办公 37 年,死磕办公文档底层技术的独家壁垒。
通用大模型也许能写出漂亮的文案,但它们是「没手」的,不能直接在最后交付的文档里面操作。 而 WPS 将内部最高频的核心功能,抽象成了 AI 能理解的工具,让它能理解怎么调整字号、怎么对齐表格、怎么插入文本框、实现各种样式效果。
区别于简单的懂格式,WPS 建立的这套工具化与双向无损互通的能力;做到了 AI 改完的文档,和我们亲手做的一模一样,没有乱七八糟的隐藏标签,格式完美保留。
而在这个 AI 办公过程中,我们用户的角色也开始发生了一些变化。
以往我们是操作者,每一个标点都要亲力亲为;现在,我们变成了决策者。 在 WPS AI 的执行过程中,从理解指令到拆解步骤,再到调用功能,全过程都是可视化的。
我们就像坐在副驾驶,看着 AI 开车;它会告诉我们,「我打算先做数据清洗,再做图表分析」。

WPS AI 3.0 WPS灵犀 - 文字 Canvas:左侧文档编辑,右侧 AI 对话,用户与 AI 同屏协作
这种交互方式超越了简单的多轮对话,成为一种「过程可视化与实时干预」的全新范式。如果 AI 跑偏了,我们不需要推倒重来,只需在它思考的任意环节随时介入纠正,掌控权始终在我们手中。
过程透明不仅让我们更好地掌控方向,也让整个结果变得可验证、可信赖。「AI 负责规划与执行,人负责审核与决策」的模式,才是 AI 在职场真正落地的样子。
在现场的圆桌对话环节,嘉宾们还讨论了一个话题,「AI 是执行的终点,还是创意的起点?」我印象特别深的一句话是 AI 无法取代人的品味,比起执行,人的价值正在重新被凸显。

圆桌对话,探讨「AI 是执行的终点,还是创意的起点」以及「未来我们如何与 AI 写作办公」等前沿话题;左一李超凡,中间刘拓辰
AI 正在把必须做的工作自动化:排版、找图、格式、查资料、总结文档……而人类的工作,会变成:判断、提问、想法、审美、选择。这是一个更轻松、也更要求想得明白的时代。
而 WPS AI 正是在帮我们把那些繁琐的、流程化的任务都「搞定」,之后这些省下来的时间,是留给我们,可以拿来做一点真正有价值的思考和决策。
所以,AI 是终点还是起点呢,我想是因为 AI 帮我们走完了执行的终点,我们才终于有精力回到创意的起点。
在 WPS AIPPT 盲盒挑战环节,15 分钟做完 PPT 已经不是炫技,而是一种新的合作方式。用户给方向,AI 负责拆解结构、规划大纲;用户确认无误后,AI 再调用工具完成排版与美化。
整个过程,WPS AI 的每一步思考都呈现在我们面前。

WPS AIPPT 盲盒挑战,参加活动的朋友正在使用 WPS AIPPT 制作
但我要说的重点不是它有多快,而在于一种新的心流,我们终于可以只专注内容,而不是被排版和格式绑架。这其实才是 Agentic Software 的意义,不是跳过工具,而是让工具的执行过程变得高效且透明。
以往做 PPT,我们处于一种左右脑互搏的焦虑中,既要像作家一样思考逻辑,又要像设计师一样纠结配色对齐。但在这次体验中,因为 AI 接管了找图、排版、美化这些繁琐的体力活,玩家只需要专注于我想讲什么。
这种不打断、不割裂、所想即所得的流畅感,恰恰验证了前面提到的理论,只有原生在文档里的 AI,才是真正的生产力。

输入主题就能得到 PPT,WPS AIPPT 官网,aippt.wps.cn
在活动现场,我不止一次听到有人感叹,「没想到 WPS 现在的 AI 已经做得这么深入了。」这句感叹背后,其实是用户对当前市面上大量「套壳 AI」的审美疲劳。
为什么 WPS AI 能给人不同的感觉?我认为核心在于金山办公对于「AI 与软件关系」的重构。正如刘拓辰所说,Agentic Software 绝不是简单的聊天机器人。智能体这个词在今年 Manus 爆火之后,就一直没有冷下来过,但对我们用户来说,一个好的 Agent 却仍然还在被定义中。
在 AI 的 1.0 时代,大多数产品是把 AI 当作一个「插件」挂在软件旁边,两套工具流,各玩各的。最近这两年,AI 工具更是百花齐放,但真正能改变工作方式的,从来不是功能升级,而是软件结构的变化。

WPS AI 走的正是这条更难的路,彻底把 AI 融入软件设计;一方面,给 AI 一个独创的翻译引擎,让 AI 能读懂复杂的文档格式;另一方面,把拆解任务、调用工具的每一步都摊在台面上,我们看着 AI 干活,随时喊停纠正。
它不满足于仅仅生成一段文字,而是要成为一个能真正「交付结果(Get Things Done)」的智能体。无论是最近大火的「企业知识库」功能,还是这次演示的 WPS AIPPT,本质上都是这种「原生+智能体」思路的落地。
在 WPS AI 的体系里,AI 不是插件、不是外挂,也不是单纯的内容生成器。它是我们文档里的助手,是会议里的整理者,是灵感的第一落点,是 PPT 的合作者。

对于当前这个浮躁的 AI 时代来说,这其实是 WPS AI 一种克制与务实的长期主义。
不去卷那些花哨的 C 端娱乐功能,而是死磕文档、知识库、企业大脑这些 Office 办公领域的基石;也让 WPS AI成为了目前市面上少有的、真正能被称为「生产力」的产品;懂文档、懂创作、更懂用户。
回想起文章开头提到的那个问题:我们还需要多久才能跨越 AI 的尝鲜期?答案也许就在你打开 WPS 的那一刻。
当你发现,原本需要一下午才能搞定的 PPT,现在喝杯咖啡的功夫就能出初稿;当你发现,你终于不再是软件的奴隶,而是 AI 的指挥官时;你就已经是一个 AI Native 职场人了。
不要让 AI 成为你的焦虑来源,去试着指挥它,去试着把那些「必须做」的繁琐交给它,让自己专注于「值得做」的事情 。
毕竟,只有当我们繁琐的操作真正隐形,创造力才能真正显现。
文章来自于“APPSO”,作者 “APPSO”。
【开源免费】OWL是一个完全开源免费的通用智能体项目。它可以远程开Ubuntu容器、自动挂载数据、做规划、执行任务,堪称「云端超级打工人」而且做到了开源界GAIA性能天花板,达到了57.7%,超越Huggingface 提出的Open Deep Research 55.15%的表现。
项目地址:GitHub:https://github.com/camel-ai/owl
【开源免费】OpenManus 目前支持在你的电脑上完成很多任务,包括网页浏览,文件操作,写代码等。OpenManus 使用了传统的 ReAct 的模式,这样的优势是基于当前的状态进行决策,上下文和记忆方便管理,无需单独处理。需要注意,Manus 有使用 Plan 进行规划。
项目地址:https://github.com/mannaandpoem/OpenManus
【开源免费】Browser-use 是一个用户AI代理直接可以控制浏览器的工具。它能够让AI 自动执行浏览器中的各种任务,如比较价格、添加购物车、回复各种社交媒体等。
项目地址:https://github.com/browser-use/browser-use
【开源免费】字节工作流产品扣子两大核心业务:Coze Studio(扣子开发平台)和 Coze Loop(扣子罗盘)全面开源,而且采用的是 Apache 2.0 许可证,支持商用!
项目地址:https://github.com/coze-dev/coze-studio
【开源免费】n8n是一个可以自定义工作流的AI项目,它提供了200个工作节点来帮助用户实现工作流的编排。
项目地址:https://github.com/n8n-io/n8n
在线使用:https://n8n.io/(付费)
【开源免费】DB-GPT是一个AI原生数据应用开发框架,它提供开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单、更方便。
项目地址:https://github.com/eosphoros-ai/DB-GPT?tab=readme-ov-file
【开源免费】VectorVein是一个不需要任何编程基础,任何人都能用的AI工作流编辑工具。你可以将复杂的工作分解成多个步骤,并通过VectorVein固定并让AI依次完成。VectorVein是字节coze的平替产品。
项目地址:https://github.com/AndersonBY/vector-vein?tab=readme-ov-file
在线使用:https://vectorvein.ai/(付费)
【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。
项目地址:https://github.com/Significant-Gravitas/AutoGPT
【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。
项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md
【开源免费】FASTGPT是基于LLM的知识库开源项目,提供开箱即用的数据处理、模型调用等能力。整体功能和“Dify”“RAGFlow”项目类似。很多接入微信,飞书的AI项目都基于该项目二次开发。
项目地址:https://github.com/labring/FastGPT
【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。
项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md
在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0