Mamba真比Transformer更优吗?Mamba原作者:两个都要!混合架构才是最优解
Mamba真比Transformer更优吗?Mamba原作者:两个都要!混合架构才是最优解Mamba模型由于匹敌Transformer的巨大潜力,在推出半年多的时间内引起了巨大关注。但在大规模预训练的场景下,这两个架构还未有「一较高低」的机会。最近,英伟达、CMU、普林斯顿等机构联合发表的实证研究论文填补了这个空白。
Mamba模型由于匹敌Transformer的巨大潜力,在推出半年多的时间内引起了巨大关注。但在大规模预训练的场景下,这两个架构还未有「一较高低」的机会。最近,英伟达、CMU、普林斯顿等机构联合发表的实证研究论文填补了这个空白。
文生图、文生视频,视觉生成赛道火热,但仍存在亟需解决的问题。
最近,新加坡国立大学联合南洋理工大学和哈工深的研究人员共同提出了一个全新的视频推理框架,这也是首次大模型推理社区提出的面向视频的思维链框架(Video-of-Thought, VoT)。视频思维链VoT让视频多模态大语言模型在复杂视频的理解和推理性能上大幅提升。该工作已被ICML 2024录用为Oral paper。
自从大型 Transformer 模型逐渐成为各个领域的统一架构,微调就成为了将预训练大模型应用到下游任务的重要手段
740 TFLOPS!迄今最强 FlashAttention 来了。
生成式模型原本被设计来模仿人类的各种复杂行为,但人们普遍认为它们最多只能达到与其训练数据中的专家相当的水平。不过,最新的研究突破了这一限制,表明在特定领域,如国际象棋,通过采用低温采样技术,这些模型能够超越它们所学习的那些专家,展现出更高的能力。
OpenAI全新的AGI路线图,刚刚被曝出了!OpenAI将AI划分为5个等级,自称其AI模型正处于L1,但很快就会达到L2(推理者)。而根据其前研究员预测,五级AGI最快将在27年实现。
时隔一年,FlashAttention又推出了第三代更新,专门针对H100 GPU的新特性进行优化,在之前的基础上又实现了1.5~2倍的速度提升。
智能体又双叒叕进化了!这次,什么游戏都能玩,什么软件都能操控了。
评估大模型是否诚实的基准来了!
大模型权威测试,翻车了?! HuggingFace都在用的MMLU-PRO,被扒出评测方法更偏向闭源模型,被网友直接在GitHub Issue提出质疑。
一年一度谷歌学术指标公布了!Nature年年霸榜,而今年与以往不同的是,国际学术顶会的排名大幅提升,CVPR位居第二,超越Science仅次于Nature。另外,TOP 20中,共有五大顶会入选,被引最高论文与大模型时代下前沿技术,一脉相承。
近年来,人物动作生成的研究取得了显著的进展,在众多领域,如计算机视觉、计算机图形学、机器人技术以及人机交互等方面获得广泛的关注。然而,现有工作大多只关注动作本身,以场景和动作类别同时作为约束条件的研究依然处于起步阶段。
四大 VLM,竟都在盲人摸象?
近日,字节跳动大模型团队开发的成果 Depth Anything V2 ,入选苹果公司 Core ML 模型库,目前已呈现在开发者相关页面中。
大幅节省算力资源,又又又有新解了!!
随着人工智能和大型模型技术的迅猛发展,检索增强生成(Retrieval-Augmented Generation, RAG)已成为大型语言模型生成文本的一种主要范式。
释放进一步扩展 Transformer 的潜力,同时还可以保持计算效率。
神经网络拟合数据的能力受哪些因素影响?CNN一定比Transformer差吗?ReLU和SGD还有哪些神奇的作用?近日,LeCun参与的一项工作向我们展示了神经网络在实践中的灵活性。
Meta首席人工智能科学家、深度学习之父Yann LeCun又开喷了。
近期,商汤科技 - 南洋理工大学联合 AI 研究中心 S-Lab ,上海人工智能实验室,北京大学与密歇根大学联合提出 DreamGaussian4D(DG4D),通过结合空间变换的显式建模与静态 3D Gaussian Splatting(GS)技术实现高效四维内容生成。
微软的这项研究让开发者可以在单卡机器上以 10 倍的速度处理超过 1M 的输入文本。
生物神经网络有一个重要的特点是高度可塑性,这使得自然生物体具有卓越的适应性,并且这种能力会影响神经系统的突触强度和拓扑结构。
SelfGNN框架结合了图神经网络和个性化自增强学习,能够捕捉用户行为的多时间尺度模式,降低噪声影响,提升推荐系统鲁棒性。
下一代视觉模型会摒弃patch吗?Meta AI最近发表的一篇论文就质疑了视觉模型中局部关系的必要性。他们提出了PiT架构,让Transformer直接学习单个像素而不是16×16的patch,结果在多个下游任务中取得了全面超越ViT模型的性能。
来自佐治亚理工学院和英伟达的两名华人学者带队提出了名为RankRAG的微调框架,简化了原本需要多个模型的复杂的RAG流水线,用微调的方法交给同一个LLM完成,结果同时实现了模型在RAG任务上的性能提升。
超越Transformer和Mamba的新架构,刚刚诞生了。斯坦福UCSD等机构研究者提出的TTT方法,直接替代了注意力机制,语言模型方法从此或将彻底改变。
新架构,再次向Transformer发起挑战!
6月,IEEE刊登了一篇对ChatGPT代码生成任务进行系统评估的论文,数据集就是程序员们最爱的LeetCode题库。研究揭示了LLM在代码任务中出现的潜在问题和能力局限,让我们能够对模型做出进一步改进,并逐渐了解使用ChatGPT写代码的最佳姿势。
冲锋在AI辅助数学研究第一线的陶哲轩,近日又有「神总结」:ChatGPT提升的,是我们在编码、图表等次要任务上的能力;而真要搞好数学研究,基础不扎实的话,AI也是没用的。