
阿里智能化研发起飞!RTP-LLM 实现 Cursor AI 1000 token/s 推理技术揭秘
阿里智能化研发起飞!RTP-LLM 实现 Cursor AI 1000 token/s 推理技术揭秘RTP-LLM 是阿里巴巴大模型预测团队开发的高性能 LLM 推理加速引擎。它在阿里巴巴集团内广泛应用,支撑着淘宝、天猫、高德、饿了么等核心业务部门的大模型推理需求。在 RTP-LLM 上,我们实现了一个通用的投机采样框架,支持多种投机采样方法,能够帮助业务有效降低推理延迟以及提升吞吐。
RTP-LLM 是阿里巴巴大模型预测团队开发的高性能 LLM 推理加速引擎。它在阿里巴巴集团内广泛应用,支撑着淘宝、天猫、高德、饿了么等核心业务部门的大模型推理需求。在 RTP-LLM 上,我们实现了一个通用的投机采样框架,支持多种投机采样方法,能够帮助业务有效降低推理延迟以及提升吞吐。
这一创新背后既有战略布局的深意,同样还暗藏诸多挑战。
来自国内的光电混合芯片技术,登上最新顶刊Nature!
自主通才科学家的 5 个层级。
随着 OpenAI o1 和 DeepSeek R1 的爆火,大语言模型(LLM)的推理能力增强和测试时扩展(TTS)受到广泛关注。然而,在复杂推理问题中,如何精准评估模型每一步回答的质量,仍然是一个亟待解决的难题。传统的过程奖励模型(PRM)虽能验证推理步骤,但受限于标量评分机制,难以捕捉深层逻辑错误,且其判别式建模方式限制了测试时的拓展能力。
阿里巴巴可能看清楚了,自我迭代,不仅是靠用户价值和创业精神的回归,更需要的,是一场生产力革命。
从 ChatGPT 引发认知革命到 GPT-4o 实现多模态跨越,AI 技术的每次跃迁都在印证一个底层逻辑 —— 数据质量决定智能高度。而今,这场 AI 浪潮正在反哺数据库领域,推动其从幕后走向台前,完成智能时代的华丽转身。
这家科技巨头通过昼夜奋战、大举裁员以及非常规手段,实现了技术代差的快速弥合。
今天早些时候,著名研究者和技术作家 Sebastian Raschka 发布了一条推文,解读了一篇来自 Wand AI 的强化学习研究,其中分析了推理模型生成较长响应的原因。
赚钱嘛,不寒碜!