1分钟生成高质量3D素材,Meta甩出文生3D模型,效果演示惊艳
1分钟生成高质量3D素材,Meta甩出文生3D模型,效果演示惊艳Meta的文生3D模型或将给3D创作生态带来剧变。
Meta的文生3D模型或将给3D创作生态带来剧变。
3D 生成,一直在等待它的「ChatGPT时刻」。
Meta的GenAI团队在最新研究中介绍了Meta 3D Gen模型:可以在不到1分钟的时间内从文本直接端到端生成3D资产。
本文将为大家介绍CVPR 2024 Highlight的论文LangSplat: 3D Language Gaussian Splatting(三维语义高斯泼溅)。LangSplat在开放文本目标定位和语义分割任务上达到SOTA性能。在1440×1080分辨率的图像上,查询速度比之前的SOTA方法LERF快了199倍。代码已开源。
半导体行业观察:NAND发展似乎进入了一个怪圈。
3D场景理解让人形机器人「看得见」周身场景,使汽车自动驾驶功能能够实时感知行驶过程中可能出现的情形,从而做出更加智能化的行为和反应。而这一切需要大量3D场景的详细标注,从而急剧提升时间成本和资源投入。
SAX-NeRF框架,一种专为稀疏视角下X光三维重建设计的新型NeRF方法,通过Lineformer Transformer和MLG采样策略显著提升了新视角合成和CT重建的性能。研究者还建立了X3D数据集,并开源了代码和预训练模型,为X光三维重建领域的研究提供了宝贵的资源和工具。
2024 年 5 月,DreamTech 官宣了其高质量 3D 生成大模型 Direct3D,并公开了相关学术论文 Direct3D: Scalable Image-to-3D Generation via 3D Latent Diffusion Transformer。
在三维生成建模的研究领域,现行的两大类 3D 表示方法要么基于拟合能力不足的隐式解码器,要么缺乏清晰定义的空间结构难以与主流的 3D 扩散技术融合。来自中科大、清华和微软亚洲研究院的研究人员提出了 GaussianCube,这是一种具有强大拟合能力的显式结构化三维表示,并且可以无缝应用于目前主流的 3D 扩散模型中。
3D生成是生成式人工智能和计算机图形学领域最引人注目的话题之一,符合影视、游戏标准的3D生成尤其受产业界关注。在生产流程中,一般品类的3D资产往往通过手工建模或者扫描的方式制作。但作为3D资产的一个重要类别,服装资产的往往来源于平面板片与物理模拟等流程,而不是直接在3D上建模。