苹果盯上Prompt AI, 不是买产品,是要伯克利团队的[视觉大脑]
苹果盯上Prompt AI, 不是买产品,是要伯克利团队的[视觉大脑]根据外媒 CNBC 消息,苹果公司正和计算机视觉领域的初创企业 Prompt AI,推进收购事宜的 “最后阶段谈判”。
根据外媒 CNBC 消息,苹果公司正和计算机视觉领域的初创企业 Prompt AI,推进收购事宜的 “最后阶段谈判”。
大家或许都有过这样的体验: 看完一部喜欢的动漫,总会心血来潮地想去 “圣地巡礼”;刷到别人剪辑精美的旅行 vlog,也会忍不住收藏起来,想着哪天亲自走一遍同样的路线。旅行与影像的结合,总是能勾起人们的
模型众多,该如何选择? GPT-5:OpenAI的最新旗舰模型,统一智能系统,GPT-5 集成了多个模型,自动根据任务复杂度选择最适合的模型进行处理,多模态首选。 GPT-5 Thinking:GPT
练习时长一年半,宇树机器人又进化了。
8 月榜单,最值得关注的变化是 Lovart 的访问量上升,8 月访问量上涨了 68.08% 至 323w,进入榜单。Lovart,读者想必已经熟悉,是奇点星宇的另一款 AI 视觉类产品,其产品核心设计为画布+对话框+编辑工具箱,也就是用户指导 AI 干活,
2023年Meta推出SAM,随后SAM 2扩展到视频分割,性能再度突破。近日,SAM 3悄悄现身ICLR 2026盲审论文,带来全新范式——「基于概念的分割」(Segment Anything with Concepts),这预示着视觉AI正从「看见」迈向真正的「理解」。
这几天,关于「微调已死」的言论吸引了学术圈的广泛关注。一篇来自斯坦福大学、SambaNova、UC 伯克利的论文提出了一种名为 Agentic Context Engineering(智能体 / 主动式上下文工程)的技术,让语言模型无需微调也能实现自我提升!
LLaVA 于 2023 年提出,通过低成本对齐高效连接开源视觉编码器与大语言模型,使「看图 — 理解 — 对话」的多模态能力在开放生态中得以普及,明显缩小了与顶级闭源模型的差距,标志着开源多模态范式的重要里程碑。
对于大模型的强化学习已在数学推理、代码生成等静态任务中展现出不俗实力,而在需要与开放世界交互的智能体任务中,仍面临「两朵乌云」:高昂的 Rollout 预算(成千上万的 Token 与高成本的工具调用)和极其稀疏的「只看结果」的奖励信号。
写给正在落地 AI 产品的工程师。一些代码直接可改造复用;另一些,是我踩坑后的经验之谈。