任意Agent皆可强化学习!微软推出Agent Lightning框架,无需修改任何代码
任意Agent皆可强化学习!微软推出Agent Lightning框架,无需修改任何代码AI Agent已逐渐从科幻走进现实!不仅能够执行编写代码、调用工具、进行多轮对话等复杂任务,甚至还可以进行端到端的软件开发,已经在金融、游戏、软件开发等诸多领域落地应用。
AI Agent已逐渐从科幻走进现实!不仅能够执行编写代码、调用工具、进行多轮对话等复杂任务,甚至还可以进行端到端的软件开发,已经在金融、游戏、软件开发等诸多领域落地应用。
调模型不如“管上下文”。这篇文章基于 ACE(Agentic Context Engineering),把系统提示、运行记忆和证据做成可演化的 playbook,用“生成—反思—策展”三角色加差分更新,规避简化偏置与上下文塌缩。在 AppWorld 与金融基准上,ACE 相较强基线平均提升约 +10.6% 与 +8.6%,适配时延降至约 1/6(-86.9%),且在无标注监督场景依然有效。
本研究由新加坡国立大学 ShowLab 团队主导完成。 共一作者 Yanzhe Chen 陈彦哲(博士生)与 Kevin Qinghong Lin 林庆泓(博士生)均来自 ShowLab@NUS,分别聚焦于多模态理解以及智能体(Agent)研究。 项目负责人为新加坡国立大学校长青年助理教授 Mike Zheng Shou 寿政。
MGX,全称 MetaGPT X,是 DeepWisdom 推出的多智能体平台,定位是“24/7 的 AI 开发团队”。它的特别之处在于,你只需要输入需求,系统就会自动生成一支虚拟团队。
如今,一家初创公司正在为旨在替代人类程序员工作的人工智能代理开发此类工具。其CEO 兼联合创始人Preston Zhou透露,近两年最活跃的 AI 初创企业投资方之一 Andreessen Horowitz ,刚刚领投了这家编程工具公司 Relace2300 万美元的融资。
很激动。很激动。今天我想分享一个对 Agent 发展来说可能具有里程碑意义的开源项目:OpenAgents。它的目标简单又大胆:让所有 Agent 能像人类一样联网协作。我第一次看到这个项目时,确实有种这事儿该有人干,但真没人干的感觉。
CBINSIGHTS 最近做了一份《AI Agent Bible》的报告,系统梳理了 AI Agent 的发展前景与未来趋势,提出了面向 2026 年的六大关键预测,并绘制出完整的生态版图,涵盖最值得关注的创业公司、基础设施提供商及快速崛起的营收增长型企业。同时,报告深入解析了市场格局与技术栈的演进,包括 AI Agent 的市场图谱、技术堆栈与收入竞争态势,并通过企业级应用的视角,
近日,谷歌资深工程主管、杰出工程师 Antonio Gulli 在网上公开发布了自己的新书《Agentic Design Patterns(智能体设计模式)》。地址:https://docs.google.com/document/d/1rsaK53T3Lg5KoGwvf8ukOUvbELRtH-V0LnOIFDxBryE/preview?tab=t.0#
Hi,返工早上好。 我是洛小山,和你聊聊 AI 行业思考。 AI Agent 应用的竞争逻辑,正在发生根本性变化。 当许多团队还在死磕提示词优化(PE 工程)时,一些优秀团队开始重心转向了上下文工程
具体而言,Verlog 是一个多轮强化学习框架,专为具有高度可变回合(episode)长度的长时程(long-horizon) LLM-Agent 任务而设计。它在继承 VeRL 和 BALROG 的基础上,并遵循 pytorch-a2c-ppo-acktr-gail 的成熟设计原则,引入了一系列专门优化手段,从而在任务跨度从短暂交互到数百回合时,依然能够实现稳定而高效的训练。