
RAG作为AI大模型应用落地的必需品,Html RAG、Multimodal RAG 和 Agentic RAG的区别是啥?
RAG作为AI大模型应用落地的必需品,Html RAG、Multimodal RAG 和 Agentic RAG的区别是啥?检索-增强生成 (RAG) 是一个永不过时的话题,并在不断扩展以增强LLMs 的功能。对于那些不太熟悉RAG 的人来说:这种方法利用外部知识来增强模型的能力,从外部资源中检索您实际需要的信息。
检索-增强生成 (RAG) 是一个永不过时的话题,并在不断扩展以增强LLMs 的功能。对于那些不太熟悉RAG 的人来说:这种方法利用外部知识来增强模型的能力,从外部资源中检索您实际需要的信息。
在人工智能快速发展的今天,单一大模型在处理复杂任务时的局限性日益凸显。微软研究院最新发布的Magentic-One系统,通过创新性的多智能体协作架构,展示了突破这一瓶颈的新方向。
智能体基本上已经成为AI行业的共识,如果说有分歧,大概率也是对落地的时间有分歧。
生成式AI极大加速了AI应用的开发流程,从过去需要数月的周期缩短到仅需数天。这种变化推动了快速原型设计和实验的新模式,帮助开发者在短时间内尝试多种方案并专注于有效的解决方案,同时倡导“快速行动并负责任”的开发理念。
最近从由大型语言模型(LLM)驱动的聊天机器人向如今该领域所定义的 Agent 系统或 Agentic AI 的转变,可以用一句老话来概括:“少说话,多做事。”
36氪获悉,近日北京悦点科技有限公司(以下简称“悦点科技”)完成数千万元人民币的天使轮融资。本轮融资由云启资本独家投资,融得资金将主要用于公司在企业级GenAI应用平台的进一步研发和商业拓展。
乔布斯在2010年给Siri描绘的蓝图,正在成为很多AI助手对自己的期待。
对于 LLM 从业者来说,让 LLM 落地应用并发挥作用需要手动构建并反复调试 Agentic Workflow,这无疑是个繁琐过程,一遍遍修改相似的代码,调试 prompt,手动执行测试并观察效果,并且换个 LLM 可能就会失效,有高昂的人力成本。许多公司甚至专职招聘 Prompt Engineer 来完成这一工作。
在红杉资本在最新发布的文章《Generative AI's Act O1 :The Agentic Reasoning Era Begins》中,讨论了当下生成式AI正在从以训练时计算的快思考,向以推理时计算的慢思考发展。OpenAI 的新模型 o1便是重要的标志。慢思考的到来也将会带来新的机会,行业认知的重要性被高度重视起来,过去对于AI应用以及背后的商业理解也将被刷新。
继吴恩达在今年 4 月红杉 AI 峰会演讲过去之后,Agent > GPT5?吴恩达最新演讲:四种 Agent 设计范式(通俗易懂版)。