
用LaTRO框架,通过自我奖励机制来激发LLM潜在推理能力,基准上提升12.5% |Salesforce重磅
用LaTRO框架,通过自我奖励机制来激发LLM潜在推理能力,基准上提升12.5% |Salesforce重磅大规模语言模型(LLMs)已经在自然语言处理任务中展现了卓越的能力,但它们在复杂推理任务上依旧面临挑战。推理任务通常需要模型具有跨越多个步骤的推理能力,这超出了LLMs在传统训练阶段的表现。
大规模语言模型(LLMs)已经在自然语言处理任务中展现了卓越的能力,但它们在复杂推理任务上依旧面临挑战。推理任务通常需要模型具有跨越多个步骤的推理能力,这超出了LLMs在传统训练阶段的表现。
现在,随便丢给机械手一个陌生物体,它都可以像人类一样轻松拿捏了——
继Anthropic之后,OpenAI也要接管人类电脑了?!
本期我们邀请到了 Hedra 的联合创始人兼 CEO Michael。他曾在斯坦福大学攻读博士学位,由吴教授和李飞飞教授共同指导,专注于物理世界建模与具身智能的交叉研究。在 NVIDIA 的 Omniverse 团队实习期间,他参与了 Omni-Gibson 的研究,对模拟物理与真实感表现系统的结合有深入探索,同时对电影、电视剧和动画等娱乐行业充满热情。
新一代通用灵活的网络结构 TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters 来啦!
几十万人关注,一发表即被行业大佬评为“这是很长时间以来最重要的论文”。
世界模型又出新进展了,来自国内机构。
最近几天,AI 社区都在讨论同一篇论文。 UCSD 助理教授 Dan Fu 说它指明了大模型量化的方向。
昨天,The Information 的一篇文章让 AI 社区炸了锅。
2024 年的诺贝尔化学奖颁发给了在结构生物学领域取得重大成就的 David Baker 团队和 AlphaFold 团队,激发了 AI for science 领域新的研究热潮。