ShareGPT4V作者团队又一力作!百万高质量视频-字幕数据助力社区提升多模态大模型视频理解及生成能力
ShareGPT4V作者团队又一力作!百万高质量视频-字幕数据助力社区提升多模态大模型视频理解及生成能力继Sora官宣之后,多模态大模型在视频生成方面的应用简直就像井喷一样涌现出来,LUMA、Gen-3 Alpha等视频生成模型展现了极佳质量的艺术风格和视频场景的细节雕刻能力,文生视频、图生视频的新前沿不断被扩展令大家惊喜不已,抱有期待。
继Sora官宣之后,多模态大模型在视频生成方面的应用简直就像井喷一样涌现出来,LUMA、Gen-3 Alpha等视频生成模型展现了极佳质量的艺术风格和视频场景的细节雕刻能力,文生视频、图生视频的新前沿不断被扩展令大家惊喜不已,抱有期待。
曾经的视频生成王者Runway,带着大招鲨~回来了——
AI圈这遍地开花的大好局面,让吃瓜群众们甚是惊喜。
谷歌DeepMind开发的AlphaFold一夜之间颠覆了生物学,这一革命性的突破背后,有一支怎样的团队?AlphaFold的缔造者之一、DeepMind研究副总裁分享了成功的秘密——如何组建一个团队来应对这一巨大的跨学科挑战并取得胜利。
不久之前,Google DeepMind 发布了 AlphaFold3,再次引发了人们对「AI + 生命科学」的讨论。
AlphaFold3引起的浪潮下,一个新的抗体设计生成式AI大模型浮出水面。
AlphaFold3的横空出世再次震撼了整个学术界,然而谷歌DeepMind的「不开源」引起学界不满,AlphaFold服务器遭到黑客攻击,开源项目也开始发力。
把169861个生物物种数据装进大模型,大模型竟get到了生物中心法则的奥秘——
世界是变化的,分子是运动的,从预测静态单一结构走向动态构象分布是揭示蛋白质等生物分子功能的重要一步。探索蛋白质的构象分布,能帮助理解蛋白质与其他分子相互作用的生物过程;识别蛋白质表面下的潜在药物位点,描绘各个亚稳态之间的过渡路径,有助于研究人员设计出具有更强特异性和效力的目标抑制剂和治疗药物。但传统的分子动力学模拟方法昂贵且耗时,难以跨越长的时间尺度,从而观察到重要的生物过程。
2023年,亚马逊、Meta、谷歌、微软四家公司整体投入体量更大、增速飞快,而腾讯、阿里巴巴、百度没有明显加大投入、追赶超越的动作,这一定程度说明未来在AI竞争上的差距还将扩大。