
推理AI致命弱点,大模型变「杠精」!被带偏后死不悔改
推理AI致命弱点,大模型变「杠精」!被带偏后死不悔改DeepMind新研究揭示了当与推理无关的想法,被直接注入到模型的推理过程中时,它们却难以恢复,而且越大的模型越难恢复。
DeepMind新研究揭示了当与推理无关的想法,被直接注入到模型的推理过程中时,它们却难以恢复,而且越大的模型越难恢复。
最近,关于大模型推理的测试时间扩展(Test time scaling law )的探索不断涌现出新的范式,包括① 结构化搜索结(如 MCTS),② 过程奖励模型(Process Reward Model )+ PPO,③ 可验证奖励 (Verifiable Reward)+ GRPO(DeepSeek R1)。
AI非上云不可、非集群不能?万字实测告诉你,32B卡不卡?70B是不是智商税?要几张卡才能撑住业务? 全网最全指南教你如何用最合适的配置,跑出最强性能。
谁会第一个到达ASI?SemiAnalysis大佬Dylan Patel脱口而出:OpenAI!最近,这位圈内最懂AI和芯片的大佬,毫不留情地戳穿了GPT-4.5惨败的原因,还揭露了Meta仓促模仿DeepSeek结果大翻车的内幕。
清华大学朱军教授团队与 NVIDIA Deep Imagination 研究组联合提出一种全新的视觉生成模型优化范式 —— 直接判别优化(DDO)。
超大规模MoE模型(如DeepSeek),到底该怎么推理才能做到又快又稳。现在,这个问题似乎已经有了标准答案——华为一个新项目,直接把推理超大规模MoE背后的架构、技术和代码,统统给开源了!
OpenAI 有个反常规的设定, 他们将我生成的图片整理成一个画廊,但是点开图片并没有跳回到当时对话的选项,只能在这张图的基础上修改。 这也是很多AI目前的交互通病, 我和他们的对话正在丢失。
像人一样推理。 大模型的架构,到了需要变革的时候? 在对复杂任务的推理工作上,当前的大语言模型(LLM)主要采用思维链(CoT)技术,但这些技术存在任务分解复杂、数据需求大以及高延迟等问题。
今年2月DeepSeek爆火,震惊国内外。实际上,在此之前,中国信息通信研究院(下称:中国信通院)的大模型评测团队就观察到国内模型性能迅速提升的势头,他们当中就包括中国信通院人工智能研究所所长魏凯。
尽管大型语言模型(LLMs)和大型视觉 - 语言模型(VLMs)在视频分析和长语境处理方面取得了显著进展,但它们在处理信息密集的数小时长视频时仍显示出局限性。