
算法、系统和应用,三个视角全面读懂混合专家(MoE)
算法、系统和应用,三个视角全面读懂混合专家(MoE)LLM 很强,而为了实现 LLM 的可持续扩展,有必要找到并实现能提升其效率的方法,混合专家(MoE)就是这类方法的一大重要成员。
LLM 很强,而为了实现 LLM 的可持续扩展,有必要找到并实现能提升其效率的方法,混合专家(MoE)就是这类方法的一大重要成员。
华盛顿大学和Allen AI最近发表的论文提出了一种新颖有趣的数据合成方法。他们发现,充分利用LLM的自回归特性,可以引导模型自动生成高质量的指令微调数据。
基于评测维度,考虑到各评测集关注的评测维度,可以将其划分为通用评测基准和具体评测基准。
当今的LLM已经号称能够支持百万级别的上下文长度,这对于模型的能力来说,意义重大。但近日的两项独立研究表明,它们可能只是在吹牛,LLM实际上并不能理解这么长的内容。
Scaling Law还没走到尽头,「小模型」逐渐成为科技巨头们的追赶趋势。Meta最近发布的MobileLLM系列,规模甚至降低到了1B以下,两个版本分别只有125M和350M参数,但却实现了比更大规模模型更优的性能。
编码器模型哪去了?如果 BERT 效果好,那为什么不扩展它?编码器 - 解码器或仅编码器模型怎么样了?
如何让大模型更好的遵从人类指令和意图?如何让大模型有更好的推理能力?如何让大模型避免幻觉?能否解决这些问题,是让大模型真正广泛可用,甚至实现超级智能(Super Intelligence)最为关键的技术挑战。这些最困难的挑战也是吴翼团队长期以来的研究重点,大模型对齐技术(Alignment)所要攻克的难题。
前谷歌科学家Yi Tay重磅推出「LLM时代的模型架构」系列博客,首篇博文的话题关于:基于encoder-only架构的BERT是如何被基于encoder-decoder架构的T5所取代的,分析了BERT灭绝的始末以及不同架构模型的优缺点,以史为鉴,对于未来的创新具有重要意义。
最高端的大模型,往往需要最朴实的语言破解。来自EPFL机构研究人员发现,仅将一句有害请求,改写成过去时态,包括GPT-4o、Llama 3等大模型纷纷沦陷了。
著名AI学者、斯坦福大学教授吴恩达提出了AI Agent的四种设计方式后,Agentic Workflow(智能体工作流)立即火爆全球,多个行业都在实践智能体工作流的应用,并推动了新的Agentic AI探索热潮。