
全面超越ViT,美团、浙大等提出视觉任务统一架构VisionLLAMA
全面超越ViT,美团、浙大等提出视觉任务统一架构VisionLLAMA半年多来,Meta 开源的 LLaMA 架构在 LLM 中经受了考验并大获成功(训练稳定、容易做 scaling)。
半年多来,Meta 开源的 LLaMA 架构在 LLM 中经受了考验并大获成功(训练稳定、容易做 scaling)。
如果说 OpenAI 已经占据了今天闭源大模型生态的一极,那 Meta 无疑是代表开源大模型的另一极。
谷歌团队推出「通用视觉编码器」VideoPrism,在3600万高质量视频字幕对和5.82亿个视频剪辑的数据集上完成了训练,性能刷新30项SOTA。
从文本生成模型 GPT、文生图模型 DALL·E,到文生视频模型 Sora,OpenAI 可以说成功跑通了 AGI 的所有技术栈,为什么是 OpenAI 而不是谷歌、Meta?
短短几天,「世界模型」雏形相继诞生,AGI真的离我们不远了?Sora之后,LeCun首发AI视频预测架构V-JEPA,能够以人类的理解方式看世界。
为了应对大模型不断复杂的推理和训练,英伟达、AMD、英特尔、谷歌、微软、Meta、Arm、高通、MatX以及Lemurian Labs,纷纷开始研发全新的硬件解决方案。
在文本生成音频(或音乐)这个 AIGC 赛道,Meta 最近又有了新研究成果,而且开源了。前几日,在论文《Masked Audio Generation using a Single Non-Autoregressive Transformer》中,Meta FAIR 团队、Kyutai 和希伯来大学推出了 MAGNeT,一种在掩码生成序列建模方法。
最近,复旦、俄亥俄州立大学、Meta和宾夕法尼亚州立大学的研究者发现,GPT-4 Agent规划旅行只有0.6%成功率!离在人类复杂环境中做出规划,智能体还任重道远。
最近,来自Meta和UC伯克利的研究人员,发布了一种最新的音频到人像模型。操作简单,输出极致逼真。
一项名为MetaGPT的研究,通过对智能体角色进行明确分工,并要求多个智能体在协作中采用统一规范的“交流格式”等方法,让智能体性能大增。