
语义熵识破LLM幻觉!牛津大学新研究登Nature
语义熵识破LLM幻觉!牛津大学新研究登Nature近日,来自牛津大学的研究人员推出了利用语义熵来检测LLM幻觉的新方法。作为克服混淆的策略,语义熵建立在不确定性估计的概率工具之上,可以直接应用于基础模型,无需对架构进行任何修改。
近日,来自牛津大学的研究人员推出了利用语义熵来检测LLM幻觉的新方法。作为克服混淆的策略,语义熵建立在不确定性估计的概率工具之上,可以直接应用于基础模型,无需对架构进行任何修改。
WHO 表示,1/3 的癌症可以通过早发现、早治疗得以治愈。
随着 AI for Science 受到越来越多的关注,人们更加关心 AI 如何解决一系列科学问题并且可以被成功借鉴到其他相近的领域。
近日,清华大学与密歇根大学联合提出的自动驾驶汽车安全性「稀疏度灾难」问题,发表在了顶刊《Nature Communications》上。研究指出,安全攸关事件的稀疏性导致深度学习模型训练难度大增,提出了密集学习、模型泛化改进和车路协同等技术路线以应对挑战。
方向完全搞错了?
Meta AI的NLLB-200登上Nature,「不让任何一门语言掉队」,能翻译200种语言的大模型获得Nature社论的盛赞——复兴了濒临灭绝的语言,但是Nature研究人员也郑重提醒Meta,必须将使用这些语言的社区也纳入进来,才会真正减缓语言的消亡。
生命科学领域的基础大模型来了!
清华类脑计算研究中心施路平团队新成果,登上最新一期Nature封面。
未来,会发生什么?
我国在类脑计算、类脑感知两个重要方向均已取得基础性突破。