特斯拉聘请「动捕师」训练人形机器人Optimus,时薪最高48美元
特斯拉聘请「动捕师」训练人形机器人Optimus,时薪最高48美元具身智能的数据从这里来。
具身智能的数据从这里来。
多模态大语言模型 (Multimodal Large Language Moodel, MLLM) 以其强大的语言理解能力和生成能力,在各个领域取得了巨大成功。
专注于计算机图形学的全球学术顶会 SIGGRAPH,正在出现新的趋势。
多模态大模型(Multimodal Large Language Models,MLLMs)在不同的任务中表现出了令人印象深刻的能力,尽管如此,这些模型在检测任务中的潜力仍被低估。
近日,来自谷歌DeepMind的研究人员,推出了专门用于评估大语言模型时间推理能力的基准测试——Test of Time(ToT),从两个独立的维度分别考察了LLM的时间理解和算术能力。
LLM能否解决「狼-山羊-卷心菜」经典过河难题?最近,菲尔兹奖得主Timothy Gowers分享了实测GPT-4o的过程,模型在最简单的题目上竟然做错了,甚至网友们发现,就连Claude 3.5也无法幸免。
在大语言模型突飞猛进的同时,谷歌的研究团队在时序预测方面也取得了突破性的成果——今年2月发表的模型TimesFM,而且放出了模型的代码和权重,让更多开发者体验这种「开箱即用」的零样本预测能力。
马斯克部下跳槽,把人形机器人技术开源了。不少创业公司的估值,一夜被打了骨折。
2023-2024年,以 GPT-4V、Gemini、Claude、LLaVA 为代表的多模态大模型(Multimodal LLMs)已经在文本和图像等多模态内容处理方面表现出了空前的能力,成为技术新浪潮。
今年 3 月,以构建大型开源社区而闻名的 AI 初创公司 Hugging Face,挖角前特斯拉科学家 Remi Cadene 来领导一个新的开源机器人项目 ——LeRobot,引起了轰动。