AI智能编程新框架,节省一半时间就能“聪明”地写代码丨上海AI Lab&华师大
AI智能编程新框架,节省一半时间就能“聪明”地写代码丨上海AI Lab&华师大在代码层面,大语言模型已经能够写出正确而优雅的程序。但在机器学习工程场景中,它离真正“打赢比赛”仍有不小差距。
在代码层面,大语言模型已经能够写出正确而优雅的程序。但在机器学习工程场景中,它离真正“打赢比赛”仍有不小差距。
当Agent学会了自我进化,我们距离AGI还有多远?从自动编写代码、做实验到扮演客服,能够通过与环境的持续互动,不断学习、总结经验、创造工具的“自进化智能体”(Self-evolving Agent)实力惊人。
上海人工智能实验室发布新一代文档解析大模型——MinerU2.5。作为MinerU系列最新成果,该模型仅以1.2B参数规模,就在OmniDocBench、olmOCR-bench、Ocean-OCR等权威评测上,全面超越Gemini2.5-Pro、GPT-4o、Qwen2.5-VL-72B等主流通用大模型,以及dots.ocr、MonkeyOCR、PP-StructureV3等专业文档解析工具。
视觉-语言-动作模型是实现机器人在复杂环境中灵活操作的关键因素。然而,现有训练范式存在一些核心瓶颈,比如数据采集成本高、泛化能力不足等。
近年来,大语言模型(LLMs)展现出强大的语言理解与生成能力,推动了文本生成、代码生成、问答、翻译等任务的突破。代表性模型如 GPT、Claude、Gemini、DeepSeek、Qwen 等,已经深刻改变了人机交互方式。
数据在AI时代的重要性已经不言而喻,但悬而未决的是—— 如何精确量化这些数据的价值、辨别其优劣? 为此,上海人工智能实验室OpenDataLab团队在数据领域持续深耕,正式推出了开放数据竞技场OpenDataArena。
近年来,AI大模型在数学计算、逻辑推理和代码生成领域的推理能力取得了显著突破。特别是DeepSeek-R1等先进模型的出现,可验证强化学习(RLVR)技术展现出强大的性能提升潜力。
近年来,文生图模型(Text-to-Image Models)飞速发展,从早期的 GAN 架构到如今的扩散和自回归模型,生成图像的质量和细节表现力实现了跨越式提升。这些模型大大降低了高质量图像创作的门槛,为设计、教育、艺术创作等领域带来了前所未有的便利。
当大模型把人类曾经的终极考题变成日常练习,AI的奔跑却悄悄瘸了腿—— 训练能力突飞猛进,验证答案的本事却成了拖后腿的短板。 为此,上海AI Lab和澳门大学联合发布通用答案验证模型CompassVerifier与评测集VerifierBench。填补了Verifier领域没有建立验证->提升->验证的循环迭代体系的空白。
当马斯克的 Grok-4 还在用 “幽默模式” 讲冷笑话时,中国的科学家已经在用书生 Intern-S1 默默破解癌症药物靶点的密码 —— 谁说搞科研不能又酷又免费?