豆包、Kimi等10个AI大模型勇闯美股,谁才是最猛的那个?
豆包、Kimi等10个AI大模型勇闯美股,谁才是最猛的那个?新乐子来了。 10个AI大模型,券商账户实时交易,勇闯美股。 除了老面孔GPT、Claude、Gemini、Grok、Qwen、DeepSeek,这次四个国产新玩家,豆包、Minimax、Kimi、文心也加入战场。昨晚,首战正式开赛,豆包已经一马当先,开始了开门红。
新乐子来了。 10个AI大模型,券商账户实时交易,勇闯美股。 除了老面孔GPT、Claude、Gemini、Grok、Qwen、DeepSeek,这次四个国产新玩家,豆包、Minimax、Kimi、文心也加入战场。昨晚,首战正式开赛,豆包已经一马当先,开始了开门红。
银河通用联合多所大学发布了全球首个跨本体全域环视导航基座大模型NavFoM,让机器人能自己找路,而不再依赖遥控,从而推动具身智能向规模化商业落地演进。
近期,Google DeepMind 发布新一代具身大模型 Gemini Robotics 1.5,其核心亮点之一便是被称为 Motion Transfer Mechanism(MT)的端到端动作迁移算法 —— 无需重新训练,即可把不同形态机器人的技能「搬」到自己身上。不过,官方技术报告对此仅一笔带过,细节成谜。
生成式AI技术的成熟,让智能编程逐渐成为众多开发者的日常,然而一个大模型API选型的“不可能三角”又随之而来:追求顶级、高速的智能(如GPT-4o/Claude 3.5),就必须接受高昂的调用成本;追求低成本,又往往要在性能和稳定性上做出妥协。开发者“既要又要”的正义,谁能给?
人类之所以能与复杂的物理世界高效互动,很大程度上源于对「工具」的使用、理解与创造能力。对任何通用型智能体而言,这同样是不可或缺的基本技能,对物理工具的使用会大大影响任务的成功率与效率。
屠榜开源大模型的MiniMax M2是怎样炼成的?为啥M1用了Linear Attention,到了M2又换成更传统的Full Attention了? 面对现实任务,M2表现得非常扛打,在香港大学的AI-Trader模拟A股大赛中拿下了第一名,20天用10万本金赚了将近三千元。
这篇论文提出了一种颠覆性的协作模式,即通过强化学习训练一个“小模型”作为智能代理(Agent),让它自动学会如何写出完美的Prompt,一步步引导任何一个“大模型”完成复杂推理,实现了真正的“AI指挥AI”。
大模型推理到底要不要「长篇大论」?过去一年,OpenAI o 系列、DeepSeek-R1、Qwen 等一系列推理模型,把「长链思维」玩到极致:答案更准了,但代价是推理链越来越长、Token 消耗爆炸、响应速度骤降。
昨天一大早,就发现美团开源了他们首款全模态实时交互大模型:LongCat-Flash-Omni。
是孩子该看的东西。