落子两次收购背后:OpenAI要做“大语言模型操作系统”
落子两次收购背后:OpenAI要做“大语言模型操作系统”本文关注OpenAI近期的两次收购,从这两次收购背后,试图拼起OpenAI设计“未来操作系统--LLMOS”的巨大蓝图。
本文关注OpenAI近期的两次收购,从这两次收购背后,试图拼起OpenAI设计“未来操作系统--LLMOS”的巨大蓝图。
大语言模型绝不会是通往AGI之路上的最后一个重大技术突破。
在人工智能领域的发展过程中,对大语言模型(LLM)的控制与指导始终是核心挑战之一,旨在确保这些模型既强大又安全地服务于人类社会。早期的努力集中于通过人类反馈的强化学习方法(RLHF)来管理这些模型,成效显著,标志着向更加人性化 AI 迈出的关键一步。
大语言模型提示中,竟有不少「怪癖」:重复某些内容,准确性就大大提高;人名变匿名,准确性就大大下降。最近,马里兰OpenAI等机构的30多位研究者,首次对LLM的提示技术进行了大规模系统研究,并发布75页详尽报告。
大语言模型(LLM)的迅速发展,引发了关于如何评估其公平性和可靠性的热议。
当前主流的视觉语言模型(VLM)主要基于大语言模型(LLM)进一步微调。因此需要通过各种方式将图像映射到 LLM 的嵌入空间,然后使用自回归方式根据图像 token 预测答案。
通过算法层面的创新,未来大语言模型做数学题的水平会不断地提高。
最近两天,一篇入选 ACL 2024 的论文《Can Language Models Serve as Text-Based World Simulators?》在社交媒体 X 上引发了热议,就连图灵奖得主 Yann LeCun 也参与了进来。
近年来,大语言模型(Large Language Models, LLMs)受到学术界和工业界的广泛关注,得益于其在各种语言生成任务上的出色表现,大语言模型推动了各种人工智能应用(例如ChatGPT、Copilot等)的发展。然而,大语言模型的落地应用受到其较大的推理开销的限制,对部署资源、用户体验、经济成本都带来了巨大挑战。
在大语言模型突飞猛进的同时,谷歌的研究团队在时序预测方面也取得了突破性的成果——今年2月发表的模型TimesFM,而且放出了模型的代码和权重,让更多开发者体验这种「开箱即用」的零样本预测能力。